{"title":"Recent progress of low-loaded platinum on well-functionalized carbon electrocatalysts for oxygen reduction reaction","authors":"Seon-Yeong Lee, Myung Kyoon Kim, U-hyeok Son, Seunggyun Han, Seungik Lee, Han-Ik Joh","doi":"10.1007/s42823-024-00822-1","DOIUrl":null,"url":null,"abstract":"<div><p>Low-loaded (1–5 wt%) platinum on carbon-based electrocatalysts (l-Pt/C) for the oxygen reduction reaction (ORR) has garnered attention as a promising approach to advancing fuel cell commercialization. Carbon materials, known for their morphological diversity, high specific surface area, ease of doping, cost-effectiveness, and high electrical conductivity, are widely used as supports for l-Pt/C catalysts. This review provides a comprehensive overview of recent progress in carbon-based l-Pt/C catalysts, focusing on three major strategies: modulating pore structure, utilizing the Pt size effect, and introducing novel Pt active sites. Each strategy is detailed, highlighting its principles, characteristics, and limitations with illustrative examples. Finally, we discuss and offer guidance for future research perspectives on highly active l-Pt/C catalysts for ORR.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 1","pages":"107 - 127"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00822-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Low-loaded (1–5 wt%) platinum on carbon-based electrocatalysts (l-Pt/C) for the oxygen reduction reaction (ORR) has garnered attention as a promising approach to advancing fuel cell commercialization. Carbon materials, known for their morphological diversity, high specific surface area, ease of doping, cost-effectiveness, and high electrical conductivity, are widely used as supports for l-Pt/C catalysts. This review provides a comprehensive overview of recent progress in carbon-based l-Pt/C catalysts, focusing on three major strategies: modulating pore structure, utilizing the Pt size effect, and introducing novel Pt active sites. Each strategy is detailed, highlighting its principles, characteristics, and limitations with illustrative examples. Finally, we discuss and offer guidance for future research perspectives on highly active l-Pt/C catalysts for ORR.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.