Facile fabrication of 3D silver micro-particles with nano-flower structured surface and their evaluation as a surface enhanced Raman spectroscopy substrate
Mayra L. Melgoza-Ramírez, M. A. Meneses-Nava, Mario Rodríguez, J.-L. Maldonado
{"title":"Facile fabrication of 3D silver micro-particles with nano-flower structured surface and their evaluation as a surface enhanced Raman spectroscopy substrate","authors":"Mayra L. Melgoza-Ramírez, M. A. Meneses-Nava, Mario Rodríguez, J.-L. Maldonado","doi":"10.1007/s11051-025-06272-8","DOIUrl":null,"url":null,"abstract":"<div><p>Attractive flower-shaped silver nanostructures with abundant nano-gaps were synthesized by a rapid one-step chemical reduction method at room temperature in the presence of as reducing agent and PVP as surfactant. The morphological and optical properties of the obtained 3D silver nano-flowers (AgNFs) were characterized by FE-SEM, XRD, and UV-VIS spectroscopy. The SEM images revealed the formation of AgNFs with high nano-textured surface morphologies. The AgNFs obtained at high phenylhydrazine concentration favor the nanoscale roughness that contributes significantly to the high sensitivity of surface-enhanced Raman scattering (SERS) activity. The AgNFs were found to possess excellent stability and can be stored for several months. SERS substrates had a limit of detection (LoD) of 2.1×10<sup>−7</sup> M obtained for Rhodamine B (RhB). Furthermore, two chloride salts (NaCl and MgCl<sub>2</sub>) were added to AgNFs suspension to improve the SERS signal. Under optimal conditions, the SERS substrates prepared with various salts exhibit increased sensitivity and higher intensity levels compared to those without the addition of salts. The SERS substrates showed an enhancement in LoD on the order of 10<sup>−9</sup> M obtained for both RhB and rhodamine 6G (Rh6G) used as SERS probes. This work shows a promising approach to developing a SERS platform for the detection of organic chromophores.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-025-06272-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Attractive flower-shaped silver nanostructures with abundant nano-gaps were synthesized by a rapid one-step chemical reduction method at room temperature in the presence of as reducing agent and PVP as surfactant. The morphological and optical properties of the obtained 3D silver nano-flowers (AgNFs) were characterized by FE-SEM, XRD, and UV-VIS spectroscopy. The SEM images revealed the formation of AgNFs with high nano-textured surface morphologies. The AgNFs obtained at high phenylhydrazine concentration favor the nanoscale roughness that contributes significantly to the high sensitivity of surface-enhanced Raman scattering (SERS) activity. The AgNFs were found to possess excellent stability and can be stored for several months. SERS substrates had a limit of detection (LoD) of 2.1×10−7 M obtained for Rhodamine B (RhB). Furthermore, two chloride salts (NaCl and MgCl2) were added to AgNFs suspension to improve the SERS signal. Under optimal conditions, the SERS substrates prepared with various salts exhibit increased sensitivity and higher intensity levels compared to those without the addition of salts. The SERS substrates showed an enhancement in LoD on the order of 10−9 M obtained for both RhB and rhodamine 6G (Rh6G) used as SERS probes. This work shows a promising approach to developing a SERS platform for the detection of organic chromophores.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.