Guanidine-modified cellulose enhances capturing and recovery of phosphates from wastewater†

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Gunanka Hazarika, Sribash Das, Anjali Patel and Debasis Manna
{"title":"Guanidine-modified cellulose enhances capturing and recovery of phosphates from wastewater†","authors":"Gunanka Hazarika, Sribash Das, Anjali Patel and Debasis Manna","doi":"10.1039/D4EW00910J","DOIUrl":null,"url":null,"abstract":"<p >The recovery of dwindling materials from wastewater could be helpful in resolving the rising need for resources in society. Phosphate is a nutrient that all living organisms require, but a reduction in global phosphate rock deposits could severely impact human food security in the near future. To mitigate this problem, we developed a Zn(<small>II</small>) coordinated 1-aminoguanidine (ag) functionalized cellulose-based biopolymer. The chemical structure of the synthesized biopolymer was characterized using several analytical techniques, including Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), FESEM-energy dispersive X-ray spectroscopy (FESEM-EDX), and X-ray photoelectron spectroscopy (XPS). The phosphate binding to the polymer was investigated by FT-IR, FESEM–EDX, XPS and ion chromatography (IC) analyses. The IC analysis revealed strong and fast phosphate removal efficacy of the polymer, with a maximum adsorption capacity of 310 mg g<small><sup>−1</sup></small> (pH 7.0). Interestingly, the sequestered phosphate could be readily retrieved, and the biopolymer could be easily recycled by changing the pH (∼13) of the aqueous solution. Further studies revealed that the presence of guanidinium moieties was essential for its exfoliation in aqueous media and antibacterial activity against both Gram-negative and Gram-positive bacteria. The present work will assist in improving the design of water-insoluble biopolymers that could efficiently extract and recover phosphate from wastewater, thus reducing the detrimental effect of water eutrophication.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 3","pages":" 691-701"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d4ew00910j","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The recovery of dwindling materials from wastewater could be helpful in resolving the rising need for resources in society. Phosphate is a nutrient that all living organisms require, but a reduction in global phosphate rock deposits could severely impact human food security in the near future. To mitigate this problem, we developed a Zn(II) coordinated 1-aminoguanidine (ag) functionalized cellulose-based biopolymer. The chemical structure of the synthesized biopolymer was characterized using several analytical techniques, including Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), FESEM-energy dispersive X-ray spectroscopy (FESEM-EDX), and X-ray photoelectron spectroscopy (XPS). The phosphate binding to the polymer was investigated by FT-IR, FESEM–EDX, XPS and ion chromatography (IC) analyses. The IC analysis revealed strong and fast phosphate removal efficacy of the polymer, with a maximum adsorption capacity of 310 mg g−1 (pH 7.0). Interestingly, the sequestered phosphate could be readily retrieved, and the biopolymer could be easily recycled by changing the pH (∼13) of the aqueous solution. Further studies revealed that the presence of guanidinium moieties was essential for its exfoliation in aqueous media and antibacterial activity against both Gram-negative and Gram-positive bacteria. The present work will assist in improving the design of water-insoluble biopolymers that could efficiently extract and recover phosphate from wastewater, thus reducing the detrimental effect of water eutrophication.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信