Mechanism by which micro-nano bubbles impact biofilm growth in drinking water distribution systems†

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Aibao Luo, Tianzhi Wang, Peiyuan Luo, Zhiwei Zheng, Manuel Fiallos, Yongning Bian and Soon-Thiam Khu
{"title":"Mechanism by which micro-nano bubbles impact biofilm growth in drinking water distribution systems†","authors":"Aibao Luo, Tianzhi Wang, Peiyuan Luo, Zhiwei Zheng, Manuel Fiallos, Yongning Bian and Soon-Thiam Khu","doi":"10.1039/D4EW00704B","DOIUrl":null,"url":null,"abstract":"<p >Biofilm growth in drinking water distribution systems (DWDS) has become a concern due to the various water quality issues it causes, and thus suitable disinfection methods are required to ensure drinking water safety. Micro-nano bubbles (MNBs) technology provides a possible breakthrough in dealing with the above issues. This paper simulates the hydraulic conditions of the terminal pipeline in a DWDS to explore biofilm formation under the influence of MNBs from different gas sources. To further understand the changes in water quality, this study evaluated the biofilm morphology, composition, microbial communities, and water quality at different experiment stages. Therefore, we divide the biofilm formation into three phases: the slow growth phase (0–27 days) (SP), rapid growth phase (27–42 days) (RP), and dynamic stability phase (42–66 days) (DP). Biofilm formation was significantly inhibited in the slow growth and rapid growth phases, especially after combining the MNBs with oxygen, causing a reduction in biofilm dry weight of 77.87%. The mechanism by which the MNBs regulate biofilm growth is different at each stage. During the SP stage, physical obstruction and chemical oxidation occurs, at the RP stage oxidative inactivation takes place, whilst at the DP stage adsorption and scour predominate. Notably, the MNBs first attach to the tank's inner surface, forming a hydrophobic layer to increase the difficulty of microbe adherence. Then, an extensive amount of hydroxyl radicals (˙OH) were generated by the MNBs collapsing, reducing the number of bacteria present while increasing the competitive advantage of oxidation-resistant bacteria. This disinfection method narrows the differences in number between the dominant bacterial populations in the biofilm, which changes the key strains and reduces microbial community diversity. As a result, the inactivation rate of <em>Planctomycetes</em> reached 54.22–61.66%, and a significant reduction of the organic matter in water was achieved (87.9% removal of TOC). These results proved that the MNBs have great potential in treating biofilms in DWDS and improving drinking water quality.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 3","pages":" 754-767"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d4ew00704b","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Biofilm growth in drinking water distribution systems (DWDS) has become a concern due to the various water quality issues it causes, and thus suitable disinfection methods are required to ensure drinking water safety. Micro-nano bubbles (MNBs) technology provides a possible breakthrough in dealing with the above issues. This paper simulates the hydraulic conditions of the terminal pipeline in a DWDS to explore biofilm formation under the influence of MNBs from different gas sources. To further understand the changes in water quality, this study evaluated the biofilm morphology, composition, microbial communities, and water quality at different experiment stages. Therefore, we divide the biofilm formation into three phases: the slow growth phase (0–27 days) (SP), rapid growth phase (27–42 days) (RP), and dynamic stability phase (42–66 days) (DP). Biofilm formation was significantly inhibited in the slow growth and rapid growth phases, especially after combining the MNBs with oxygen, causing a reduction in biofilm dry weight of 77.87%. The mechanism by which the MNBs regulate biofilm growth is different at each stage. During the SP stage, physical obstruction and chemical oxidation occurs, at the RP stage oxidative inactivation takes place, whilst at the DP stage adsorption and scour predominate. Notably, the MNBs first attach to the tank's inner surface, forming a hydrophobic layer to increase the difficulty of microbe adherence. Then, an extensive amount of hydroxyl radicals (˙OH) were generated by the MNBs collapsing, reducing the number of bacteria present while increasing the competitive advantage of oxidation-resistant bacteria. This disinfection method narrows the differences in number between the dominant bacterial populations in the biofilm, which changes the key strains and reduces microbial community diversity. As a result, the inactivation rate of Planctomycetes reached 54.22–61.66%, and a significant reduction of the organic matter in water was achieved (87.9% removal of TOC). These results proved that the MNBs have great potential in treating biofilms in DWDS and improving drinking water quality.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信