Knowing When to Stop: Delay-Adaptive Spiking Neural Network Classifiers With Reliability Guarantees

IF 8.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiechen Chen;Sangwoo Park;Osvaldo Simeone
{"title":"Knowing When to Stop: Delay-Adaptive Spiking Neural Network Classifiers With Reliability Guarantees","authors":"Jiechen Chen;Sangwoo Park;Osvaldo Simeone","doi":"10.1109/JSTSP.2024.3431996","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNNs) process time-series data via internal event-driven neural dynamics. The energy consumption of an SNN depends on the number of spikes exchanged between neurons over the course of the input presentation. Typically, decisions are produced after the entire input sequence has been processed. This results in latency and energy consumption levels that are fairly uniform across inputs. However, as explored in recent work, SNNs can produce an early decision when the SNN model is sufficiently “confident”, adapting delay and energy consumption to the difficulty of each example. Existing techniques are based on heuristic measures of confidence that do not provide reliability guarantees, potentially exiting too early. In this paper, we introduce a novel delay-adaptive SNN-based inference methodology that, wrapping around any pre-trained SNN classifier, provides guaranteed reliability for the decisions produced at input-dependent stopping times. The approach, dubbed <italic>SpikeCP</i>, leverages tools from conformal prediction (CP). It entails minimal complexity increase as compared to the underlying SNN, requiring only additional thresholding and counting operations at run time. SpikeCP is also extended to integrate a CP-aware training phase that targets delay performance. Variants of CP based on alternative confidence correction schemes, from Bonferroni to Simes, are explored, and extensive experiments are described using the MNIST-DVS data set, DVS128 Gesture dataset, and CIFAR-10 dataset.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"19 1","pages":"88-102"},"PeriodicalIF":8.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10606014/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking neural networks (SNNs) process time-series data via internal event-driven neural dynamics. The energy consumption of an SNN depends on the number of spikes exchanged between neurons over the course of the input presentation. Typically, decisions are produced after the entire input sequence has been processed. This results in latency and energy consumption levels that are fairly uniform across inputs. However, as explored in recent work, SNNs can produce an early decision when the SNN model is sufficiently “confident”, adapting delay and energy consumption to the difficulty of each example. Existing techniques are based on heuristic measures of confidence that do not provide reliability guarantees, potentially exiting too early. In this paper, we introduce a novel delay-adaptive SNN-based inference methodology that, wrapping around any pre-trained SNN classifier, provides guaranteed reliability for the decisions produced at input-dependent stopping times. The approach, dubbed SpikeCP, leverages tools from conformal prediction (CP). It entails minimal complexity increase as compared to the underlying SNN, requiring only additional thresholding and counting operations at run time. SpikeCP is also extended to integrate a CP-aware training phase that targets delay performance. Variants of CP based on alternative confidence correction schemes, from Bonferroni to Simes, are explored, and extensive experiments are described using the MNIST-DVS data set, DVS128 Gesture dataset, and CIFAR-10 dataset.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Selected Topics in Signal Processing
IEEE Journal of Selected Topics in Signal Processing 工程技术-工程:电子与电气
CiteScore
19.00
自引率
1.30%
发文量
135
审稿时长
3 months
期刊介绍: The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others. The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信