Time Scale Network: An Efficient Shallow Neural Network for Time Series Data in Biomedical Applications

IF 8.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Trevor Meyer;Camden Shultz;Najim Dehak;Laureano Moro-Velázquez;Pedro Irazoqui
{"title":"Time Scale Network: An Efficient Shallow Neural Network for Time Series Data in Biomedical Applications","authors":"Trevor Meyer;Camden Shultz;Najim Dehak;Laureano Moro-Velázquez;Pedro Irazoqui","doi":"10.1109/JSTSP.2024.3443659","DOIUrl":null,"url":null,"abstract":"Time series data is often composed of information at multiple time scales, particularly in biomedical data. While numerous deep learning strategies exist to capture this information, many make networks larger, require more data, are more demanding to compute, and are difficult to interpret. This limits their usefulness in real-world settings facing even modest computational or data constraints and can further complicate their translation into real-time processing or edge device applicaitons. We present a minimal, computationally efficient Time Scale Network combining the translation and dilation sequence used in discrete wavelet transforms with traditional convolutional neural networks and back-propagation. The network simultaneously learns features at many time scales for sequence classification with significantly reduced parameters and operations. We demonstrate advantages in Atrial Dysfunction detection including: superior accuracy-per-parameter and accuracy-per-operation, fast training and inference speeds, and visualization and interpretation of learned patterns in atrial dysfunction detection on ECG signals. We also demonstrate impressive performance in seizure prediction using EEG signals, where our network isolated a few time scales that could be strategically selected to achieve 90.9% accuracy using only 1,133 active parameters and consistently converged on pulsatile waveform shapes. This method does not rest on any constraints or assumptions regarding signal content and could be leveraged in any area of time series analysis dealing with signals containing features at many time scales.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"19 1","pages":"129-139"},"PeriodicalIF":8.7000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10637669/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Time series data is often composed of information at multiple time scales, particularly in biomedical data. While numerous deep learning strategies exist to capture this information, many make networks larger, require more data, are more demanding to compute, and are difficult to interpret. This limits their usefulness in real-world settings facing even modest computational or data constraints and can further complicate their translation into real-time processing or edge device applicaitons. We present a minimal, computationally efficient Time Scale Network combining the translation and dilation sequence used in discrete wavelet transforms with traditional convolutional neural networks and back-propagation. The network simultaneously learns features at many time scales for sequence classification with significantly reduced parameters and operations. We demonstrate advantages in Atrial Dysfunction detection including: superior accuracy-per-parameter and accuracy-per-operation, fast training and inference speeds, and visualization and interpretation of learned patterns in atrial dysfunction detection on ECG signals. We also demonstrate impressive performance in seizure prediction using EEG signals, where our network isolated a few time scales that could be strategically selected to achieve 90.9% accuracy using only 1,133 active parameters and consistently converged on pulsatile waveform shapes. This method does not rest on any constraints or assumptions regarding signal content and could be leveraged in any area of time series analysis dealing with signals containing features at many time scales.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Selected Topics in Signal Processing
IEEE Journal of Selected Topics in Signal Processing 工程技术-工程:电子与电气
CiteScore
19.00
自引率
1.30%
发文量
135
审稿时长
3 months
期刊介绍: The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others. The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信