SGT-LLC: LiDAR Loop Closing Based on Semantic Graph With Triangular Spatial Topology

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Shaocong Wang;Fengkui Cao;Ting Wang;Xieyuanli Chen;Shiliang Shao
{"title":"SGT-LLC: LiDAR Loop Closing Based on Semantic Graph With Triangular Spatial Topology","authors":"Shaocong Wang;Fengkui Cao;Ting Wang;Xieyuanli Chen;Shiliang Shao","doi":"10.1109/LRA.2025.3542695","DOIUrl":null,"url":null,"abstract":"Inspired by how humans perceive, remember, and understand the world, semantic graphs have become an efficient solution for place representation and location. However, many current graph-based LiDAR loop closing methods focus on extracting adjacency matrices or semantic histograms to describe the scene, which ignore a lot of multifaceted topology information for efficiency. In this letter, we propose a LiDAR loop closing method based on semantic graph with triangular spatial topology (SGT-LLC), which fully considers both semantic and spatial topological information. To ensure that descriptors contain robust spatial information while maintaining good rotation invariance, a local descriptor based on semantic topological encoding and triangular spatial topology is proposed, which can effectively correlate scenes and estimate 6-DoF poses. In addition, we aggregate local descriptors from various nodes in the graph using fuzzy classification to create lightweight database and efficient global search. Extensive experiments on KITTI, KITTI360, Apollo, MulRAN and MCD datasets prove the superiority of our approach, compared with state-of-art methods.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 4","pages":"3326-3333"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891171/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by how humans perceive, remember, and understand the world, semantic graphs have become an efficient solution for place representation and location. However, many current graph-based LiDAR loop closing methods focus on extracting adjacency matrices or semantic histograms to describe the scene, which ignore a lot of multifaceted topology information for efficiency. In this letter, we propose a LiDAR loop closing method based on semantic graph with triangular spatial topology (SGT-LLC), which fully considers both semantic and spatial topological information. To ensure that descriptors contain robust spatial information while maintaining good rotation invariance, a local descriptor based on semantic topological encoding and triangular spatial topology is proposed, which can effectively correlate scenes and estimate 6-DoF poses. In addition, we aggregate local descriptors from various nodes in the graph using fuzzy classification to create lightweight database and efficient global search. Extensive experiments on KITTI, KITTI360, Apollo, MulRAN and MCD datasets prove the superiority of our approach, compared with state-of-art methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信