{"title":"Influence of premixed swirl-stabilized flame on the cooling performance of an effusion-cooled combustor liner","authors":"Xiang Lu , Yongbin Ji , Bing Ge , Shusheng Zang","doi":"10.1016/j.csite.2025.105938","DOIUrl":null,"url":null,"abstract":"<div><div>The impact of premixed swirl-stabilized flame on the cooling performance of an effusion-cooled combustor liner perforated by cylindrical and fan-shaped holes is investigated under varying blowing ratios. Infrared technology is employed to ascertain the wall temperature, and computations are performed to elucidate the interaction mechanism between the flame and the cooling jets. The results demonstrate that since the premixed flame has not yet burnt out before impinging on the wall, the mainstream near the wall contains low-temperature mixtures in the swirl impingement zone and high-temperature gas in the corner recirculation and liner tail. Consequently, the wall temperature in the swirl impingement zone is relatively low, while the cooling effectiveness is high. Conversely, the corner circulation zone and the tail of the liner exhibit reduced cooling effectiveness. The increase in the blowing ratios has a negligible influence on the cooling effectiveness distribution but can enhance the cooling effectiveness and its uniformity. The fan-shaped holes are similar in the distribution of cooling effectiveness to the cylindrical ones but higher in value. Meanwhile, they have better uniformity of cooling effectiveness than the cylindrical holes, as more cooling air is assigned to holes in the corner recirculation zone and liner tail where cooling effectiveness is lower.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"68 ","pages":"Article 105938"},"PeriodicalIF":6.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25001984","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of premixed swirl-stabilized flame on the cooling performance of an effusion-cooled combustor liner perforated by cylindrical and fan-shaped holes is investigated under varying blowing ratios. Infrared technology is employed to ascertain the wall temperature, and computations are performed to elucidate the interaction mechanism between the flame and the cooling jets. The results demonstrate that since the premixed flame has not yet burnt out before impinging on the wall, the mainstream near the wall contains low-temperature mixtures in the swirl impingement zone and high-temperature gas in the corner recirculation and liner tail. Consequently, the wall temperature in the swirl impingement zone is relatively low, while the cooling effectiveness is high. Conversely, the corner circulation zone and the tail of the liner exhibit reduced cooling effectiveness. The increase in the blowing ratios has a negligible influence on the cooling effectiveness distribution but can enhance the cooling effectiveness and its uniformity. The fan-shaped holes are similar in the distribution of cooling effectiveness to the cylindrical ones but higher in value. Meanwhile, they have better uniformity of cooling effectiveness than the cylindrical holes, as more cooling air is assigned to holes in the corner recirculation zone and liner tail where cooling effectiveness is lower.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.