The potential effects of nanoparticles in gene regulation and expression in mammalian, bacterial and plant cells – A comprehensive review

Ayesha Javaid , Neelma Munir , Zainul Abideen , Bernardo Duarte , Zamin Shaheed Siddiqui , Rukhama Haq , Shagufta Naz
{"title":"The potential effects of nanoparticles in gene regulation and expression in mammalian, bacterial and plant cells – A comprehensive review","authors":"Ayesha Javaid ,&nbsp;Neelma Munir ,&nbsp;Zainul Abideen ,&nbsp;Bernardo Duarte ,&nbsp;Zamin Shaheed Siddiqui ,&nbsp;Rukhama Haq ,&nbsp;Shagufta Naz","doi":"10.1016/j.plana.2025.100145","DOIUrl":null,"url":null,"abstract":"<div><div>Gene regulation and expression are fundamental, though challenging life processes involved in the development and rectification of various cellular mechanisms. Nanoparticles have been employed as gene regulatory systems that can efficiently modulate gene expression owing to their unique physiochemical properties. Exposure to metal, metal oxide, carbon and polymer-based nanomaterials can lead to arbitrary DNA methylation and thus damage targeted cells by generating oxidative stress genes in mammals and bacteria. However, the valuable role of carbon-based nanoparticles in the suppression of tumor growth factor genes or genes attributed to inhibition of angiogenesis is an innovative approach in medical science, which may stop the progression of abnormal cells. Predominantly, nanoparticles induced the genes involved in oxidative stress, DNA methylation, pro-inflammatory reactions, signaling pathways, cell proliferation and differentiation. The expression of toxin-antitoxin genes in bacteria is also controlled by nanoparticles, such as ZnO, which inhibits biofilm formation in bacteria and is responsible for antibiotic resistance. Exposure of plants to several types of nanoparticles upregulated the genes involved in shielding the plants against oxidative and abiotic stresses, predominantly salinity stress. Gene modulation by nanoparticles in different organisms or species is not uniform. This article describes gene regulation and expression studies performed in nanoparticle-exposed mammalian, bacterial, and plant cells. This review will help researchers to upgrade gene regulation approaches, complementing the potential of nanomaterials in regulating cell activities, thereby embarking on their use in therapeutics for many genetic diseases.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"11 ","pages":"Article 100145"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111125000129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gene regulation and expression are fundamental, though challenging life processes involved in the development and rectification of various cellular mechanisms. Nanoparticles have been employed as gene regulatory systems that can efficiently modulate gene expression owing to their unique physiochemical properties. Exposure to metal, metal oxide, carbon and polymer-based nanomaterials can lead to arbitrary DNA methylation and thus damage targeted cells by generating oxidative stress genes in mammals and bacteria. However, the valuable role of carbon-based nanoparticles in the suppression of tumor growth factor genes or genes attributed to inhibition of angiogenesis is an innovative approach in medical science, which may stop the progression of abnormal cells. Predominantly, nanoparticles induced the genes involved in oxidative stress, DNA methylation, pro-inflammatory reactions, signaling pathways, cell proliferation and differentiation. The expression of toxin-antitoxin genes in bacteria is also controlled by nanoparticles, such as ZnO, which inhibits biofilm formation in bacteria and is responsible for antibiotic resistance. Exposure of plants to several types of nanoparticles upregulated the genes involved in shielding the plants against oxidative and abiotic stresses, predominantly salinity stress. Gene modulation by nanoparticles in different organisms or species is not uniform. This article describes gene regulation and expression studies performed in nanoparticle-exposed mammalian, bacterial, and plant cells. This review will help researchers to upgrade gene regulation approaches, complementing the potential of nanomaterials in regulating cell activities, thereby embarking on their use in therapeutics for many genetic diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信