{"title":"An innovative agent-based technique for determination of tortuosity in porous materials – Case study: bread and bread dough","authors":"Arash Ghaitaranpour, Mohebbat Mohebbi, Arash Koocheki","doi":"10.1016/j.crfs.2025.100995","DOIUrl":null,"url":null,"abstract":"<div><div>Tortuosity is an important structural parameter of porous materials, and it is the ratio of the actual distance between two points to the shortest linear distance between them. In the current work, we illustrate the employment of Brownian motion principles for the estimation of the average tortuosity. Two types of images were used in this work. The first one was standard images with a certain pre-defined direct length and tortuosity, and they were used for the standardization and calibration of our new method of tortuosity measurement. The second one was real images of the cross-sectional view of bread samples during baking. Tortuosity and porosity of bread were tracked at different times of baking. All image types had three connected parts named start section, transmission path region, and end section. In these images, the average tortuosity from start to end section was estimated, using the principle of Brownian motion applied in a multi-agent system. The average tortuosity of bread porous structure during baking was found to be 2– ∞. In the first stage of baking, tortuosity decreased rapidly, while at the end of this process, the tortuosity of the bread structure increased slightly. Moreover, the effect of porosity and pore distribution pattern on tortuosity could be evaluated easily, and heterogeneity of the desired structure could be illustrated. Therefore, this new method is a valuable technique to measure tortuosity in bakery products and to describe porous materials.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 100995"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927125000267","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tortuosity is an important structural parameter of porous materials, and it is the ratio of the actual distance between two points to the shortest linear distance between them. In the current work, we illustrate the employment of Brownian motion principles for the estimation of the average tortuosity. Two types of images were used in this work. The first one was standard images with a certain pre-defined direct length and tortuosity, and they were used for the standardization and calibration of our new method of tortuosity measurement. The second one was real images of the cross-sectional view of bread samples during baking. Tortuosity and porosity of bread were tracked at different times of baking. All image types had three connected parts named start section, transmission path region, and end section. In these images, the average tortuosity from start to end section was estimated, using the principle of Brownian motion applied in a multi-agent system. The average tortuosity of bread porous structure during baking was found to be 2– ∞. In the first stage of baking, tortuosity decreased rapidly, while at the end of this process, the tortuosity of the bread structure increased slightly. Moreover, the effect of porosity and pore distribution pattern on tortuosity could be evaluated easily, and heterogeneity of the desired structure could be illustrated. Therefore, this new method is a valuable technique to measure tortuosity in bakery products and to describe porous materials.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.