Square patterns in dynamical orbits

IF 0.6 3区 数学 Q3 MATHEMATICS
Vefa Goksel , Giacomo Micheli
{"title":"Square patterns in dynamical orbits","authors":"Vefa Goksel ,&nbsp;Giacomo Micheli","doi":"10.1016/j.jnt.2024.12.004","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>q</em> be an odd prime power. Let <span><math><mi>f</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> be a polynomial having degree at least 2, <span><math><mi>a</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, and denote by <span><math><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> the <em>n</em>-th iteration of <em>f</em>. Let <em>χ</em> be the quadratic character of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>)</mo></math></span> the forward orbit of <em>a</em> under iteration by <em>f</em>. Suppose that the sequence <span><math><msub><mrow><mo>(</mo><mi>χ</mi><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>a</mi><mo>)</mo><mo>)</mo><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span> is periodic, and <em>m</em> is its period. Assuming a mild and generic condition on <em>f</em>, we show that, up to a constant depending on <em>d</em>, <em>m</em> can be bounded from below by <span><math><mo>|</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>)</mo><mo>|</mo><mo>/</mo><msup><mrow><mi>q</mi></mrow><mrow><mfrac><mrow><mn>2</mn><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><mo>(</mo><mi>d</mi><mo>)</mo><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><mo>(</mo><mi>d</mi><mo>)</mo><mo>+</mo><mn>2</mn></mrow></mfrac></mrow></msup></math></span> as <em>q</em> grows. More informally, we prove that the period of the appearance of squares in an orbit of an element provides an upper bound for the size of the orbit itself. Using a similar method, we can also prove that, up to a constant depending on <em>d</em>, we cannot have more than <span><math><msup><mrow><mi>q</mi></mrow><mrow><mfrac><mrow><mn>2</mn><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><mo>(</mo><mi>d</mi><mo>)</mo><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><mo>(</mo><mi>d</mi><mo>)</mo><mo>+</mo><mn>2</mn></mrow></mfrac></mrow></msup></math></span> consecutive squares or non-squares in the forward orbit of <em>a</em>. In addition, using geometric tools from global function field theory such as abc theorem, we provide a classification of all polynomials for which our generic condition does not hold, making the results effective. Interestingly enough, our condition is purely geometrical, while our final results are completely arithmetical. As a corollary, this paper removes most of the hypothesis of (Ostafe, Shparlinski. Proceedings of the American Mathematical Society 138.8 (2010)), most notably extending the results to any degree and to non-stable polynomials.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"272 ","pages":"Pages 129-146"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25000332","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let q be an odd prime power. Let fFq[x] be a polynomial having degree at least 2, aFq, and denote by fn the n-th iteration of f. Let χ be the quadratic character of Fq, and Of(a) the forward orbit of a under iteration by f. Suppose that the sequence (χ(fn(a)))n1 is periodic, and m is its period. Assuming a mild and generic condition on f, we show that, up to a constant depending on d, m can be bounded from below by |Of(a)|/q2log2(d)+12log2(d)+2 as q grows. More informally, we prove that the period of the appearance of squares in an orbit of an element provides an upper bound for the size of the orbit itself. Using a similar method, we can also prove that, up to a constant depending on d, we cannot have more than q2log2(d)+12log2(d)+2 consecutive squares or non-squares in the forward orbit of a. In addition, using geometric tools from global function field theory such as abc theorem, we provide a classification of all polynomials for which our generic condition does not hold, making the results effective. Interestingly enough, our condition is purely geometrical, while our final results are completely arithmetical. As a corollary, this paper removes most of the hypothesis of (Ostafe, Shparlinski. Proceedings of the American Mathematical Society 138.8 (2010)), most notably extending the results to any degree and to non-stable polynomials.
动态轨道中的方形图案
设q为奇质数幂。设f∈Fq[x]是阶数至少为2的多项式,a∈Fq,用fn表示f的第n次迭代。设χ是Fq的二次特征,of (a)是a在f迭代下的正向轨道。设序列(χ(fn(a)))n≥1是周期的,m是它的周期。假设f上有一个温和而一般的条件,我们证明了,直到一个与d有关的常数,m可以从下面以| (a)为界,|/q2log2 (d)+12log2 (d)+2随着q的增长。更非正式地,我们证明了在一个元素的轨道上出现正方形的周期为轨道本身的大小提供了一个上界。使用类似的方法,我们还可以证明,在依赖于d的常数范围内,我们在a的正向轨道上不能有超过q2log2 (d)+12log2 (d)+2个连续的正方形或非正方形。此外,使用全局函数场理论中的几何工具,如abc定理,我们提供了对我们的一般条件不成立的所有多项式的分类,使结果有效。有趣的是,我们的条件是纯粹几何的,而我们的最终结果是完全算术的。作为推论,本文删除了(Ostafe, Shparlinski)的大部分假设。美国数学学会学报138.8(2010)),将结果扩展到任意阶和非稳定多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信