Characterization of atmospheric humic-like substances (HULIS) at a high elevation in North China: Abundance, molecular composition and optical properties
Chaofan Gong , Xinghui Liu , Xiaoling Nie , Xinmiao Xu , Xinfeng Wang , Likun Xue , Yan Wang
{"title":"Characterization of atmospheric humic-like substances (HULIS) at a high elevation in North China: Abundance, molecular composition and optical properties","authors":"Chaofan Gong , Xinghui Liu , Xiaoling Nie , Xinmiao Xu , Xinfeng Wang , Likun Xue , Yan Wang","doi":"10.1016/j.jes.2024.11.028","DOIUrl":null,"url":null,"abstract":"<div><div>The optical absorption of large molecular compounds HULIS (humic-like substances) can significantly impact the aerosol light absorption and radiative forcing, influencing cloud condensation nuclei formation and thus the climate and atmospheric environment. This study collected aerosol (PM<sub>2.5</sub>) samples from the summit of Mount Tai in North China to investigate the concentration, molecular composition, and optical properties of HULIS. The average concentration of HULIS in the PM<sub>2.5</sub> in this study was 1.26 ± 0.54 µg/m<sup>3</sup>, comprising for 56 % of the water-soluble organic carbon (WSOC), with levels lower than urban areas but higher than other mountainous regions. Mass spectrometry revealed that CHO and CHON components, with high aromaticity and phenolic groups, are major contributors to absorption and fluorescence. These results indicate that HULIS is mainly composed of lignin and proteins/amino sugars, derived from combustion and secondary formation, and possesses a high light absorption capacity (with MAE<sub>365</sub> (mass absorption efficiency) and AAE (Ångström exponent) indices of 0.62 m<sup>2</sup>/g and 4.99, respectively). Parallel factor analysis identified three fluorescence components of HULIS, with proportions of 60.8 % for less oxygen humic-like substances, 21.0 % for high oxygen humic-like substances, and 18.2 % for protein-like substances. Our study highlights the significance of the light-absorbing capacity and secondary formation of HULIS at Mount Tai, laying the groundwork for investigation into the climate effects, formation mechanisms, and sources of HULIS generation.</div></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"155 ","pages":"Pages 673-685"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224005606","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The optical absorption of large molecular compounds HULIS (humic-like substances) can significantly impact the aerosol light absorption and radiative forcing, influencing cloud condensation nuclei formation and thus the climate and atmospheric environment. This study collected aerosol (PM2.5) samples from the summit of Mount Tai in North China to investigate the concentration, molecular composition, and optical properties of HULIS. The average concentration of HULIS in the PM2.5 in this study was 1.26 ± 0.54 µg/m3, comprising for 56 % of the water-soluble organic carbon (WSOC), with levels lower than urban areas but higher than other mountainous regions. Mass spectrometry revealed that CHO and CHON components, with high aromaticity and phenolic groups, are major contributors to absorption and fluorescence. These results indicate that HULIS is mainly composed of lignin and proteins/amino sugars, derived from combustion and secondary formation, and possesses a high light absorption capacity (with MAE365 (mass absorption efficiency) and AAE (Ångström exponent) indices of 0.62 m2/g and 4.99, respectively). Parallel factor analysis identified three fluorescence components of HULIS, with proportions of 60.8 % for less oxygen humic-like substances, 21.0 % for high oxygen humic-like substances, and 18.2 % for protein-like substances. Our study highlights the significance of the light-absorbing capacity and secondary formation of HULIS at Mount Tai, laying the groundwork for investigation into the climate effects, formation mechanisms, and sources of HULIS generation.
期刊介绍:
The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.