Enhancing flexible supercapacitor performance of an electrochemically polymerized polypyrrole/polyester felt fabric by incorporation of TiO2 nanoparticles

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shehab A. Mansour , Mohamed A. Elfeshawy , Ragab A. Elsad
{"title":"Enhancing flexible supercapacitor performance of an electrochemically polymerized polypyrrole/polyester felt fabric by incorporation of TiO2 nanoparticles","authors":"Shehab A. Mansour ,&nbsp;Mohamed A. Elfeshawy ,&nbsp;Ragab A. Elsad","doi":"10.1016/j.mseb.2025.118171","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical polymerization effectively deposits polypyrrole (PPy) onto activated carbon polyester felt fabric (ACPFF) to create a novel flexible supercapacitor electrode. TiO<sub>2</sub> nanoparticles were used in the electrochemical polymerization process to improve the supercapacitor performance of the electrode. Electrochemical experiments revealed that adding TiO<sub>2</sub> improved the electrochemical performance of ACPFF-PPy. The cyclic voltammetry studies revealed a considerable increase in specific capacitance at various scan rates and increased from 53.5F/g to 121F/g for ACPFF-PPy and ACPFF-PPy-TiO<sub>2</sub>, respectively, at a scan rate of 5 mV/s.<!--> <!-->The capacitance obtained from galvanostatic charge–discharge measurements increased by 353 % at a current density of 1.5 A/g due to TiO<sub>2</sub> addition. The examined electrodes demonstrated good long-term cycling stability, with retentions of 81 % for ACPFF-PPy and 85 % for ACPFF-PPy-TiO<sub>2</sub> after 2400 cycles.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"317 ","pages":"Article 118171"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725001941","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical polymerization effectively deposits polypyrrole (PPy) onto activated carbon polyester felt fabric (ACPFF) to create a novel flexible supercapacitor electrode. TiO2 nanoparticles were used in the electrochemical polymerization process to improve the supercapacitor performance of the electrode. Electrochemical experiments revealed that adding TiO2 improved the electrochemical performance of ACPFF-PPy. The cyclic voltammetry studies revealed a considerable increase in specific capacitance at various scan rates and increased from 53.5F/g to 121F/g for ACPFF-PPy and ACPFF-PPy-TiO2, respectively, at a scan rate of 5 mV/s. The capacitance obtained from galvanostatic charge–discharge measurements increased by 353 % at a current density of 1.5 A/g due to TiO2 addition. The examined electrodes demonstrated good long-term cycling stability, with retentions of 81 % for ACPFF-PPy and 85 % for ACPFF-PPy-TiO2 after 2400 cycles.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信