Yang Tong , Jinguang Lai , Yaxin Tian , Jiachen Liu , Wenle Pei , Hui Yong , Yuting Li , Jungang Li , Jifan Hu
{"title":"Dielectric energy storage properties of 0–3 type BST/PVDF composite films","authors":"Yang Tong , Jinguang Lai , Yaxin Tian , Jiachen Liu , Wenle Pei , Hui Yong , Yuting Li , Jungang Li , Jifan Hu","doi":"10.1016/j.ceramint.2024.12.266","DOIUrl":null,"url":null,"abstract":"<div><div>Spin coating was used to fabricate 0–3 type BST/PVDF nanocomposite dielectric films using high-concentration suspensions. Polyvinylidene fluoride (PVDF) served as the matrix material, incorporating Ba<sub>0.8</sub>Sr<sub>0.2</sub>TiO<sub>3</sub> (BST82) and Ba<sub>0.6</sub>Sr<sub>0.4</sub>TiO<sub>3</sub> (BST64) nanoparticles, each with a particle size of 200 nm. This study investigates the microstructure, dielectric properties, dielectric temperature spectra, and energy storage performance of the BST/PVDF nanocomposite films with varying volume fractions of BST nanoparticles. The results reveal that as the volume fraction of BST82 and BST64 increases, the dielectric constant, maximum polarization, and remanent polarization increase, while the breakdown field strength decreases. The dielectric constant of the 0–3 type nanocomposite films incorporating BST fits best with the Jayasunder-Smith model across a range of 0 vol% to 20 vol%. Moreover, the maximum discharge energy storage densities of the BST82/PVDF and BST64/PVDF nanocomposite films, at a BST volume fraction of 7 vol%, are 5.74 J/cm³ and 4.21 J/cm³, respectively, under field strengths of 310 MV/m and 270 MV/m. Notably, analysis of the dielectric temperature spectrum reveals that high-temperature dielectric relaxation is primarily governed by the PVDF matrix, with the nanoparticle fillers having no significant impact on this phenomenon. In conclusion, both BST82 and BST64 nanoparticles influence the performance of the polymer films, with BST82-based nanocomposites showing higher breakdown field strength. This study provides valuable insights into the fabrication of high-performance 0–3 type nanoparticle/polymer dielectric nanocomposite films using concentrated BST/PVDF nanosuspensions and the spin coating method.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"51 7","pages":"Pages 8362-8375"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224059248","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Spin coating was used to fabricate 0–3 type BST/PVDF nanocomposite dielectric films using high-concentration suspensions. Polyvinylidene fluoride (PVDF) served as the matrix material, incorporating Ba0.8Sr0.2TiO3 (BST82) and Ba0.6Sr0.4TiO3 (BST64) nanoparticles, each with a particle size of 200 nm. This study investigates the microstructure, dielectric properties, dielectric temperature spectra, and energy storage performance of the BST/PVDF nanocomposite films with varying volume fractions of BST nanoparticles. The results reveal that as the volume fraction of BST82 and BST64 increases, the dielectric constant, maximum polarization, and remanent polarization increase, while the breakdown field strength decreases. The dielectric constant of the 0–3 type nanocomposite films incorporating BST fits best with the Jayasunder-Smith model across a range of 0 vol% to 20 vol%. Moreover, the maximum discharge energy storage densities of the BST82/PVDF and BST64/PVDF nanocomposite films, at a BST volume fraction of 7 vol%, are 5.74 J/cm³ and 4.21 J/cm³, respectively, under field strengths of 310 MV/m and 270 MV/m. Notably, analysis of the dielectric temperature spectrum reveals that high-temperature dielectric relaxation is primarily governed by the PVDF matrix, with the nanoparticle fillers having no significant impact on this phenomenon. In conclusion, both BST82 and BST64 nanoparticles influence the performance of the polymer films, with BST82-based nanocomposites showing higher breakdown field strength. This study provides valuable insights into the fabrication of high-performance 0–3 type nanoparticle/polymer dielectric nanocomposite films using concentrated BST/PVDF nanosuspensions and the spin coating method.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.