3D printable colloidal dispersions demonstrating sol-to-gel transition at low silica concentrations mediated by molecular weight distribution of polypropylene glycol oligomer

IF 5.4 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
GIANT Pub Date : 2025-02-20 DOI:10.1016/j.giant.2025.100353
Sai Wu , Qingxu Zhang , Shihao Xiao , Li'an Zhang , Chaoyi Fan , Jinpeng Wang , Jian Wang , Yijun Shen , Yihu Song , Qiang Zheng
{"title":"3D printable colloidal dispersions demonstrating sol-to-gel transition at low silica concentrations mediated by molecular weight distribution of polypropylene glycol oligomer","authors":"Sai Wu ,&nbsp;Qingxu Zhang ,&nbsp;Shihao Xiao ,&nbsp;Li'an Zhang ,&nbsp;Chaoyi Fan ,&nbsp;Jinpeng Wang ,&nbsp;Jian Wang ,&nbsp;Yijun Shen ,&nbsp;Yihu Song ,&nbsp;Qiang Zheng","doi":"10.1016/j.giant.2025.100353","DOIUrl":null,"url":null,"abstract":"<div><div>Thixotropic colloidal gels composed by hydrophilic silica and polypropylene glycol (PPG) oligomer fluidize upon shear and solidify upon cease of flow, facilitating their use in 3D printing. In this study, we present a novel approach to high-fidelity 3D printing that leverages a dual-stream mixing technique within the printer nozzle for the first time. This innovative method enables the precise fabrication of colloidal objects even at low volume fractions (<em>φ</em>) of filler. The printed gels, containing a pre-stored crosslinker, can be further processed into polyurethane nanocomposites, broadening their potential applications. Rheological studies demonstrate that the sol-gel transition in these systems can be effectively controlled by adjusting the molecular weight distribution of the polydisperse PPG oligomers. This investigation has led to the creation of a comprehensive polydispersity-molecular weight-<em>φ</em> phase diagram that characterizes the behavior of the gels under different conditions. Moreover, the mechanistic studies reveal that gelation of polydisperse oligomers occurs at significantly lower <em>φ</em> compared to monodisperse systems, which is attributed to the formation of thicker glassy layers surrounding the silica nanoparticles. Our findings provide valuable insights into the design and optimization of thixotropic gels, making them promising candidates for various applications requiring precise rheological control in materials science.</div></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"22 ","pages":"Article 100353"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542525000025","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thixotropic colloidal gels composed by hydrophilic silica and polypropylene glycol (PPG) oligomer fluidize upon shear and solidify upon cease of flow, facilitating their use in 3D printing. In this study, we present a novel approach to high-fidelity 3D printing that leverages a dual-stream mixing technique within the printer nozzle for the first time. This innovative method enables the precise fabrication of colloidal objects even at low volume fractions (φ) of filler. The printed gels, containing a pre-stored crosslinker, can be further processed into polyurethane nanocomposites, broadening their potential applications. Rheological studies demonstrate that the sol-gel transition in these systems can be effectively controlled by adjusting the molecular weight distribution of the polydisperse PPG oligomers. This investigation has led to the creation of a comprehensive polydispersity-molecular weight-φ phase diagram that characterizes the behavior of the gels under different conditions. Moreover, the mechanistic studies reveal that gelation of polydisperse oligomers occurs at significantly lower φ compared to monodisperse systems, which is attributed to the formation of thicker glassy layers surrounding the silica nanoparticles. Our findings provide valuable insights into the design and optimization of thixotropic gels, making them promising candidates for various applications requiring precise rheological control in materials science.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
GIANT
GIANT Multiple-
CiteScore
8.50
自引率
8.60%
发文量
46
审稿时长
42 days
期刊介绍: Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信