Daniel Oravec , Razeen Zaman , Sudhaker Rao , Victor Chang , George Divine , Yener N. Yeni
{"title":"Facet joint distance measurement using digital tomosynthesis while standing","authors":"Daniel Oravec , Razeen Zaman , Sudhaker Rao , Victor Chang , George Divine , Yener N. Yeni","doi":"10.1016/j.jbiomech.2025.112596","DOIUrl":null,"url":null,"abstract":"<div><div>The zygapophyseal (facet) joint plays a critical role in load transmission and stability of the spine, and facet degeneration is a common consequence of aging and osteoarthritis. The ability to accurately measure facet space is important, as decreased facet space is associated with facet degeneration and lower back pain. Although grading systems exist for assessing facet joint space narrowing, static imaging fails to characterize changes in the facet gap under load that play a role in segmental stability. Current methods for estimating the dynamic behavior of the facet joint are either inaccurate, radiation costly, or clinically impractical. In the current study, we demonstrate the feasibility of a novel method for 3D measurement of facet joint space using digital tomosynthesis (DTS) imaging in supine and standing positions. Facet gap measurements were found to be strongly correlated with (r to 0.98) and accurate (<20 µm error for median facet gap) relative to microcomputed tomography reference values. In a pilot <em>in vivo</em> demonstration with seven participants, the effect of physiological loading was detectable, with median facet joint space being larger in standing as compared to supine images (p < 0.0001). The presented approach may be useful in directly characterizing changes in the facet joint relevant to segmental stability that are not readily assessed via current clinical imaging methods.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"183 ","pages":"Article 112596"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025001071","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The zygapophyseal (facet) joint plays a critical role in load transmission and stability of the spine, and facet degeneration is a common consequence of aging and osteoarthritis. The ability to accurately measure facet space is important, as decreased facet space is associated with facet degeneration and lower back pain. Although grading systems exist for assessing facet joint space narrowing, static imaging fails to characterize changes in the facet gap under load that play a role in segmental stability. Current methods for estimating the dynamic behavior of the facet joint are either inaccurate, radiation costly, or clinically impractical. In the current study, we demonstrate the feasibility of a novel method for 3D measurement of facet joint space using digital tomosynthesis (DTS) imaging in supine and standing positions. Facet gap measurements were found to be strongly correlated with (r to 0.98) and accurate (<20 µm error for median facet gap) relative to microcomputed tomography reference values. In a pilot in vivo demonstration with seven participants, the effect of physiological loading was detectable, with median facet joint space being larger in standing as compared to supine images (p < 0.0001). The presented approach may be useful in directly characterizing changes in the facet joint relevant to segmental stability that are not readily assessed via current clinical imaging methods.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.