Yanbin Du , Caihong Yu , Zhanghan Sun , Yijia Liu , XiaoXia Liu , Yang Feng , Hongting Wang , Jie Zhou , Xianhong Li
{"title":"Soil resource availability regulates the response of micro-food web multitrophic interactions to heavy metal contamination","authors":"Yanbin Du , Caihong Yu , Zhanghan Sun , Yijia Liu , XiaoXia Liu , Yang Feng , Hongting Wang , Jie Zhou , Xianhong Li","doi":"10.1016/j.envres.2025.121222","DOIUrl":null,"url":null,"abstract":"<div><div>The effects of heavy metal contamination on soil biomes have been of considerable interest. However, the effects of heavy metal pollution on the interactions between soil multi-trophic biota in soil food webs and the regulatory mechanisms still need more research, especially in different soil situations. This study examined the impact of heavy metal contamination on soil micro-food web in two distinct soil resource availability situations. Under low soil resources availability situation, heavy metals mainly affected the community structure of soil bacteria and nematodes, with the number of edges of the bacterial network and network complexity reduced by 60.5% and 187%, respectively. In addition, the presence of heavy metals led to a significant reduction in the energy flow from soil resources to bacterivores in the nematode food web. For micro-food webs, heavy metal contamination increased the network average degree by 18.8% and 11.56% in the low and high resource availability situations, respectively. However, in high soil resource availability, heavy metal contamination decreased micro-food web stability and eased competitive relationships among multitrophic organisms and increased microbial carbon limitation and mitigates nitrogen limitation. In low soil resource availability, it increased network stability and shifted relationships among micro-food web organisms from cooperative to competitive and decreased microbial carbon limitation and aggravated nitrogen limitation. This study offers new research insights into the feedback discrepancy between resource availability and pollution stress from the perspective of multitrophic level interactions and further deepens the understanding of the environmental impacts of heavy metal pollution at the ecosystem level.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"273 ","pages":"Article 121222"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125004736","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of heavy metal contamination on soil biomes have been of considerable interest. However, the effects of heavy metal pollution on the interactions between soil multi-trophic biota in soil food webs and the regulatory mechanisms still need more research, especially in different soil situations. This study examined the impact of heavy metal contamination on soil micro-food web in two distinct soil resource availability situations. Under low soil resources availability situation, heavy metals mainly affected the community structure of soil bacteria and nematodes, with the number of edges of the bacterial network and network complexity reduced by 60.5% and 187%, respectively. In addition, the presence of heavy metals led to a significant reduction in the energy flow from soil resources to bacterivores in the nematode food web. For micro-food webs, heavy metal contamination increased the network average degree by 18.8% and 11.56% in the low and high resource availability situations, respectively. However, in high soil resource availability, heavy metal contamination decreased micro-food web stability and eased competitive relationships among multitrophic organisms and increased microbial carbon limitation and mitigates nitrogen limitation. In low soil resource availability, it increased network stability and shifted relationships among micro-food web organisms from cooperative to competitive and decreased microbial carbon limitation and aggravated nitrogen limitation. This study offers new research insights into the feedback discrepancy between resource availability and pollution stress from the perspective of multitrophic level interactions and further deepens the understanding of the environmental impacts of heavy metal pollution at the ecosystem level.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.