Catalyst strategy for the evolution of cooperation in indirect reciprocity

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Ji Quan , Yixin Feng , Jiacheng Nie , Xianjia Wang
{"title":"Catalyst strategy for the evolution of cooperation in indirect reciprocity","authors":"Ji Quan ,&nbsp;Yixin Feng ,&nbsp;Jiacheng Nie ,&nbsp;Xianjia Wang","doi":"10.1016/j.amc.2025.129379","DOIUrl":null,"url":null,"abstract":"<div><div>Indirect reciprocity, as a primary mechanism for cooperation between unrelated individuals, evaluates individuals' behavior and assigns reputation labels based on social norms. Since evaluating reputation is challenging in practice, unlike previous studies, we do not introduce the reputation evaluation rule but only record two recent action information as individuals' labels, including the most recent actions of the individual and his partner. A new type of strategy set is constructed, in which each strategy is represented by a quadruplet, with each element corresponding to an action when facing a different label partner. We explore the invasion and competition of these strategies in a population when playing donor games in both noiseless and noisy scenarios. By conducting pairwise invasion simulations between all sixteen strategies, we find that in the noiseless case, cooperative strategies with evolutionary stability can identify reasonable cooperative behaviors, tolerate unreasonable cooperative behaviors, and adopt a harsh attitude toward unreasonable defection. In the noisy case, tolerant cooperative strategies that can distinguish unreasonable defection are evolutionary stable. Furthermore, by simulating multiple strategy combinations, we find a key strategy which we call the catalyst strategy that can act as a refuge for cooperators. Although the strategy is not evolutionary stable, it can help conditional cooperative strategies resist the intrusion of defection and help the system reach a fully cooperative steady state. We also verify that the system's evolutionary outcome is robust to noise intensity and that the presence of noise cannot lead to qualitative changes in the system. Action errors have a greater impact on the average cooperation rate and average payoff of the population relative to label errors. In addition, we find that the catalytic potential of the key strategy is fully realized in larger populations. Conversely, smaller population sizes diminish the efficacy of the catalyst strategy in promoting cooperation, and this detrimental effect is exacerbated in the noisy scenario.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"497 ","pages":"Article 129379"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001067","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Indirect reciprocity, as a primary mechanism for cooperation between unrelated individuals, evaluates individuals' behavior and assigns reputation labels based on social norms. Since evaluating reputation is challenging in practice, unlike previous studies, we do not introduce the reputation evaluation rule but only record two recent action information as individuals' labels, including the most recent actions of the individual and his partner. A new type of strategy set is constructed, in which each strategy is represented by a quadruplet, with each element corresponding to an action when facing a different label partner. We explore the invasion and competition of these strategies in a population when playing donor games in both noiseless and noisy scenarios. By conducting pairwise invasion simulations between all sixteen strategies, we find that in the noiseless case, cooperative strategies with evolutionary stability can identify reasonable cooperative behaviors, tolerate unreasonable cooperative behaviors, and adopt a harsh attitude toward unreasonable defection. In the noisy case, tolerant cooperative strategies that can distinguish unreasonable defection are evolutionary stable. Furthermore, by simulating multiple strategy combinations, we find a key strategy which we call the catalyst strategy that can act as a refuge for cooperators. Although the strategy is not evolutionary stable, it can help conditional cooperative strategies resist the intrusion of defection and help the system reach a fully cooperative steady state. We also verify that the system's evolutionary outcome is robust to noise intensity and that the presence of noise cannot lead to qualitative changes in the system. Action errors have a greater impact on the average cooperation rate and average payoff of the population relative to label errors. In addition, we find that the catalytic potential of the key strategy is fully realized in larger populations. Conversely, smaller population sizes diminish the efficacy of the catalyst strategy in promoting cooperation, and this detrimental effect is exacerbated in the noisy scenario.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信