Manu K Sajan, Babloo Chaudhary, Akarsh P K, Babita Sah
{"title":"Investigations on the development of hybrid mound breakwaters for tsunami defense","authors":"Manu K Sajan, Babloo Chaudhary, Akarsh P K, Babita Sah","doi":"10.1016/j.apor.2025.104489","DOIUrl":null,"url":null,"abstract":"<div><div>Tsunamis significantly damage coastal infrastructure and lives, resulting in extensive economic implications. Despite the global adoption of breakwaters as a primary coastal defence measure, it was observed that the structural integrity of several of these breakwaters was compromised during past tsunamis. The present study addresses these vulnerabilities of breakwaters by particularly focusing on the most commonly adopted rubble mound type breakwater. Further, this study introduces a novel technique in order to enhance the reliability of these structures by mitigating the tsunami induced failure mechanisms. In the novel technique, wrap-faced geogrids are implemented to reinforce the rubble mound without compromising the breakwater functionality in dissipating the incident wave energy through transmission. A comprehensive evaluation was carried out, including tsunami overflow tests, analytical assessments, and numerical simulations, to ascertain the effectiveness of the novel hybrid mound breakwater. The findings indicate that the developed hybrid mound breakwater withstood level 1 tsunamis with a 96.7 % reduction in settlement. One of the critical failure mechanism of breakwaters observed during past tsunamis was due to the seepage induced scouring of the foundation. The hybrid mound breakwater showcased a 42.37 % reduction in the foundation pore water pressure during tsunami by incorporating cut off walls. The numerical simulations also reconfirmed the enhanced performance of hybrid mound breakwater to protect the coasts from future tsunamis.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"156 ","pages":"Article 104489"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014111872500077X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0
Abstract
Tsunamis significantly damage coastal infrastructure and lives, resulting in extensive economic implications. Despite the global adoption of breakwaters as a primary coastal defence measure, it was observed that the structural integrity of several of these breakwaters was compromised during past tsunamis. The present study addresses these vulnerabilities of breakwaters by particularly focusing on the most commonly adopted rubble mound type breakwater. Further, this study introduces a novel technique in order to enhance the reliability of these structures by mitigating the tsunami induced failure mechanisms. In the novel technique, wrap-faced geogrids are implemented to reinforce the rubble mound without compromising the breakwater functionality in dissipating the incident wave energy through transmission. A comprehensive evaluation was carried out, including tsunami overflow tests, analytical assessments, and numerical simulations, to ascertain the effectiveness of the novel hybrid mound breakwater. The findings indicate that the developed hybrid mound breakwater withstood level 1 tsunamis with a 96.7 % reduction in settlement. One of the critical failure mechanism of breakwaters observed during past tsunamis was due to the seepage induced scouring of the foundation. The hybrid mound breakwater showcased a 42.37 % reduction in the foundation pore water pressure during tsunami by incorporating cut off walls. The numerical simulations also reconfirmed the enhanced performance of hybrid mound breakwater to protect the coasts from future tsunamis.
期刊介绍:
The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.