Photovoltaic power prediction system based on dual-layer decomposition strategy and a novel dynamic grouping multi-objective coati optimization algorithm

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaole Tang , Hao Lu , Yanting Kang , Wenjun Zhao
{"title":"Photovoltaic power prediction system based on dual-layer decomposition strategy and a novel dynamic grouping multi-objective coati optimization algorithm","authors":"Xiaole Tang ,&nbsp;Hao Lu ,&nbsp;Yanting Kang ,&nbsp;Wenjun Zhao","doi":"10.1016/j.ijepes.2025.110562","DOIUrl":null,"url":null,"abstract":"<div><div>The substantial volatility of photovoltaic (PV) power output presents challenges to the stable operation of power grids. To improve the accuracy and stability of PV power prediction, this study proposes a PV power prediction system based on a dual-layer decomposition strategy and a dynamic grouping multi-objective Coati optimization algorithm (DGMOCOA). This system includes three core modules: data preprocessing, optimization, and prediction. The dual-layer decomposition strategy effectively utilizes high-frequency signal information, overcoming the limitations of single-layer methods. Additionally, the DGMOCOA employs a dynamic grouping strategy to balance exploration and exploitation, enhancing the system’s accuracy and stability. To validate the proposed strategy and hybrid model, extensive experiments were conducted. The results show that, compared to 11 benchmark models, the proposed model achieves higher prediction accuracy and greater stability. In interval prediction, it also demonstrates higher coverage and narrower intervals.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"166 ","pages":"Article 110562"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525001139","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The substantial volatility of photovoltaic (PV) power output presents challenges to the stable operation of power grids. To improve the accuracy and stability of PV power prediction, this study proposes a PV power prediction system based on a dual-layer decomposition strategy and a dynamic grouping multi-objective Coati optimization algorithm (DGMOCOA). This system includes three core modules: data preprocessing, optimization, and prediction. The dual-layer decomposition strategy effectively utilizes high-frequency signal information, overcoming the limitations of single-layer methods. Additionally, the DGMOCOA employs a dynamic grouping strategy to balance exploration and exploitation, enhancing the system’s accuracy and stability. To validate the proposed strategy and hybrid model, extensive experiments were conducted. The results show that, compared to 11 benchmark models, the proposed model achieves higher prediction accuracy and greater stability. In interval prediction, it also demonstrates higher coverage and narrower intervals.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信