Yaoming Liu , Gen Li , Jiaxuan Jiang , Sujie Fan , Lan Lu , Ting Wang , Guigang Li , Wenzong Zhou , Xuequn Liu , Yingjie Li , Hong Sun , Liang Liang , Yuhong Tang , Yang Chen , Jianjun Gu , Fei Li , Xiuli Fang , Tao Sun , Aiguo Lv , Yayi Wang , Xiulan Zhang
{"title":"The genomic and epigenomic landscape of iridocorneal endothelial syndrome","authors":"Yaoming Liu , Gen Li , Jiaxuan Jiang , Sujie Fan , Lan Lu , Ting Wang , Guigang Li , Wenzong Zhou , Xuequn Liu , Yingjie Li , Hong Sun , Liang Liang , Yuhong Tang , Yang Chen , Jianjun Gu , Fei Li , Xiuli Fang , Tao Sun , Aiguo Lv , Yayi Wang , Xiulan Zhang","doi":"10.1016/j.gendis.2024.101448","DOIUrl":null,"url":null,"abstract":"<div><div>Iridocorneal endothelial (ICE) syndrome is a rare, irreversibly blinding eye disease with an unknown etiology. Understanding its genomic and epigenomic landscape could aid in developing etiology-based therapies. In this study, we recruited 99 ICE patients and performed whole-genome sequencing (WGS) on 51 and genome-wide DNA methylation profiling on 48 of them. We conducted mutational burden testing on genes and noncoding regulatory regions, comparing the ICE cohort with control groups (9197 East Asians from the gnomAD database and 350 normal Chinese from our in-house cohort). Copy number variation (CNV) analysis and differential methylation of regions were also explored. We identified RP1L1 (27/51, 53%) with a significantly higher coding-altering mutational burden in the ICE cohort (p < 8.3×10<sup>−7</sup>), with mutations predominantly at chr8:10467637 (hg19). Additionally, 41 regions with significant CNVs were identified, including two regions at chr19:15783859-15791329 (hg19) and chr3:75786061-75790887 (hg19), showing copy number loss in 39 and 19 patients, respectively. We also identified 2,717 differentially methylated regions (DMRs), with hypomethylation prevalent in ICE syndrome (91.9% of DMRs). Among these, 45 recurrent hypomethylated regions (HMRs) in more than 10% of ICE patients showed differential methylation compared to normal controls. This study presents the first comprehensive genomic and epigenomic characterization of ICE syndrome, offering insights into its underlying etiology.</div></div>","PeriodicalId":12689,"journal":{"name":"Genes & Diseases","volume":"12 3","pages":"Article 101448"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & Diseases","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352304224002459","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Iridocorneal endothelial (ICE) syndrome is a rare, irreversibly blinding eye disease with an unknown etiology. Understanding its genomic and epigenomic landscape could aid in developing etiology-based therapies. In this study, we recruited 99 ICE patients and performed whole-genome sequencing (WGS) on 51 and genome-wide DNA methylation profiling on 48 of them. We conducted mutational burden testing on genes and noncoding regulatory regions, comparing the ICE cohort with control groups (9197 East Asians from the gnomAD database and 350 normal Chinese from our in-house cohort). Copy number variation (CNV) analysis and differential methylation of regions were also explored. We identified RP1L1 (27/51, 53%) with a significantly higher coding-altering mutational burden in the ICE cohort (p < 8.3×10−7), with mutations predominantly at chr8:10467637 (hg19). Additionally, 41 regions with significant CNVs were identified, including two regions at chr19:15783859-15791329 (hg19) and chr3:75786061-75790887 (hg19), showing copy number loss in 39 and 19 patients, respectively. We also identified 2,717 differentially methylated regions (DMRs), with hypomethylation prevalent in ICE syndrome (91.9% of DMRs). Among these, 45 recurrent hypomethylated regions (HMRs) in more than 10% of ICE patients showed differential methylation compared to normal controls. This study presents the first comprehensive genomic and epigenomic characterization of ICE syndrome, offering insights into its underlying etiology.
期刊介绍:
Genes & Diseases is an international journal for molecular and translational medicine. The journal primarily focuses on publishing investigations on the molecular bases and experimental therapeutics of human diseases. Publication formats include full length research article, review article, short communication, correspondence, perspectives, commentary, views on news, and research watch.
Aims and Scopes
Genes & Diseases publishes rigorously peer-reviewed and high quality original articles and authoritative reviews that focus on the molecular bases of human diseases. Emphasis will be placed on hypothesis-driven, mechanistic studies relevant to pathogenesis and/or experimental therapeutics of human diseases. The journal has worldwide authorship, and a broad scope in basic and translational biomedical research of molecular biology, molecular genetics, and cell biology, including but not limited to cell proliferation and apoptosis, signal transduction, stem cell biology, developmental biology, gene regulation and epigenetics, cancer biology, immunity and infection, neuroscience, disease-specific animal models, gene and cell-based therapies, and regenerative medicine.