{"title":"Adaptive mesh refinement algorithm for CESE schemes on unstructured quadrilateral meshes","authors":"Lisong Shi , Chaoxiong Zhang , Chih-Yung Wen","doi":"10.1016/j.cpc.2025.109565","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces the development of space-time Conservation Element and Solution Element (CESE) methods tailored for adaptive unstructured quadrilateral meshes. An efficient algorithm is then proposed to manage the mesh adaptation process for these staggered schemes, utilizing a unique cell-tree-vertex data structure. This structure accelerates the construction of conservation elements and simplifies the interconnection of computational cells, enabling a flexible approach for handling adaptive mesh refinement in complex computational domains. The integration of second-order <em>a</em>-<em>α</em>, Courant number-insensitive, and upwind CESE schemes with this adaptation algorithm is demonstrated. Numerical simulations of compressible inviscid flows are conducted to validate the global conservation property, ensure second-order accuracy across interfaces at different refinement levels, and evaluate the effectiveness of the extended schemes and adaptation algorithm.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"311 ","pages":"Article 109565"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525000682","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces the development of space-time Conservation Element and Solution Element (CESE) methods tailored for adaptive unstructured quadrilateral meshes. An efficient algorithm is then proposed to manage the mesh adaptation process for these staggered schemes, utilizing a unique cell-tree-vertex data structure. This structure accelerates the construction of conservation elements and simplifies the interconnection of computational cells, enabling a flexible approach for handling adaptive mesh refinement in complex computational domains. The integration of second-order a-α, Courant number-insensitive, and upwind CESE schemes with this adaptation algorithm is demonstrated. Numerical simulations of compressible inviscid flows are conducted to validate the global conservation property, ensure second-order accuracy across interfaces at different refinement levels, and evaluate the effectiveness of the extended schemes and adaptation algorithm.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.