A triple action mechanism synergistic interface based on tannic acid/poly (ethylene glycol)/Fe3+ formation for improving the properties of short bamboo fiber/PBSA biocomposites

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Jian Gao , Yanbin Bi , Yi Zhang , Jixing Su , Yida Wang , Shuangbao Zhang
{"title":"A triple action mechanism synergistic interface based on tannic acid/poly (ethylene glycol)/Fe3+ formation for improving the properties of short bamboo fiber/PBSA biocomposites","authors":"Jian Gao ,&nbsp;Yanbin Bi ,&nbsp;Yi Zhang ,&nbsp;Jixing Su ,&nbsp;Yida Wang ,&nbsp;Shuangbao Zhang","doi":"10.1016/j.compscitech.2025.111124","DOIUrl":null,"url":null,"abstract":"<div><div>Bamboo fibers (BFs) reinforced polymer composites face significant challenges in enhancing composite properties due to poor interfacial compatibility. This study is based on the coordination and molecular cross-linking reactions between tannic acid (TA), Fe<sup>3+</sup>, and polyethylene glycol (PEG). A triple-action mechanism interface integrating rigid-flexible balanced, molecular cross-linking and mechanical interlocking was obtained in BFs/PBSA composites by a simple one-pot water reaction and hot pressing process. The interface significantly improved the performance of the composites. Specifically, the tensile strength, tensile modulus, flexural strength, flexural modulus, and impact strength of the composites were increased by 20 %, 13 %, 38 %, 14 %, and 54 %, respectively, while the maximum energy storage modulus was enhanced by 71 %. Additionally, the initial and maximum degradation temperatures increased by 17.1 °C and 19.2 °C, respectively, and water absorption decreased by 34 %. These results demonstrate the promising potential of the interface for preparing high-performance plant fiber-reinforced polymer composites.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"264 ","pages":"Article 111124"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825000922","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Bamboo fibers (BFs) reinforced polymer composites face significant challenges in enhancing composite properties due to poor interfacial compatibility. This study is based on the coordination and molecular cross-linking reactions between tannic acid (TA), Fe3+, and polyethylene glycol (PEG). A triple-action mechanism interface integrating rigid-flexible balanced, molecular cross-linking and mechanical interlocking was obtained in BFs/PBSA composites by a simple one-pot water reaction and hot pressing process. The interface significantly improved the performance of the composites. Specifically, the tensile strength, tensile modulus, flexural strength, flexural modulus, and impact strength of the composites were increased by 20 %, 13 %, 38 %, 14 %, and 54 %, respectively, while the maximum energy storage modulus was enhanced by 71 %. Additionally, the initial and maximum degradation temperatures increased by 17.1 °C and 19.2 °C, respectively, and water absorption decreased by 34 %. These results demonstrate the promising potential of the interface for preparing high-performance plant fiber-reinforced polymer composites.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信