Shahirah Abu Bakar , Ioan Pop , Lit Ken Tan , Norihan Md Arifin
{"title":"Optimizing a ternary hybrid ferrofluid slip flow with magnetic dipole and viscous dissipation by Response Surface Methodology (RSM)","authors":"Shahirah Abu Bakar , Ioan Pop , Lit Ken Tan , Norihan Md Arifin","doi":"10.1016/j.applthermaleng.2025.126087","DOIUrl":null,"url":null,"abstract":"<div><div>In electromagnetism, a magnetic dipole is a tiny loop of electric current or a pair of magnetic poles. As the loop size decreases to zero while maintaining a constant magnetic moment, it forms a magnetic dipole. Composed by the magnetic particles, ferromagnetic fluids align with magnetic fields and when a magnetic dipole interacts with such fluids, the particles magnetize the fluid and influence the dipole’s field. Hence, this study investigates the magnetic dipole and velocity slip on ternary hybrid ferrofluid flow past a shrinking surface. The model considers three magnetic nanoparticles – iron oxide (Fe<sub>3</sub>O<sub>4</sub>), cobalt ferrite (CoFe<sub>2</sub>O<sub>4</sub>), and copper (Cu) – dispersed in a base fluid. The similarity transformation technique is applied to derive mathematical models, which were solved numerically using bvp4c program in MATLAB. The analysis reveals that ferrohydrodynamic interaction reduces the skin friction coefficient and heat transfer rate but enhances velocity and temperature profiles. Additionally, the ternary hybrid ferrofluid is also shown to outperform both conventional ferrofluid and hybrid ferrofluid in fluid flow characteristics. Response Surface Methodology (RSM) is employed to identify the optimal combination of parameters, suggesting that the highest ferrohydrodynamic parameter and viscous dissipation, along with minimal Cu-nanoparticle concentration, maximize the heat transfer rate. Contour and surface plots illustrate these optimal conditions. This study highlights an innovative application of ternary ferrofluid with a magnetic dipole and employs RSM to optimize parameters for enhanced heat transfer performance, addressing a gap in existing literature and providing the way for further advancements in this field.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"269 ","pages":"Article 126087"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125006787","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In electromagnetism, a magnetic dipole is a tiny loop of electric current or a pair of magnetic poles. As the loop size decreases to zero while maintaining a constant magnetic moment, it forms a magnetic dipole. Composed by the magnetic particles, ferromagnetic fluids align with magnetic fields and when a magnetic dipole interacts with such fluids, the particles magnetize the fluid and influence the dipole’s field. Hence, this study investigates the magnetic dipole and velocity slip on ternary hybrid ferrofluid flow past a shrinking surface. The model considers three magnetic nanoparticles – iron oxide (Fe3O4), cobalt ferrite (CoFe2O4), and copper (Cu) – dispersed in a base fluid. The similarity transformation technique is applied to derive mathematical models, which were solved numerically using bvp4c program in MATLAB. The analysis reveals that ferrohydrodynamic interaction reduces the skin friction coefficient and heat transfer rate but enhances velocity and temperature profiles. Additionally, the ternary hybrid ferrofluid is also shown to outperform both conventional ferrofluid and hybrid ferrofluid in fluid flow characteristics. Response Surface Methodology (RSM) is employed to identify the optimal combination of parameters, suggesting that the highest ferrohydrodynamic parameter and viscous dissipation, along with minimal Cu-nanoparticle concentration, maximize the heat transfer rate. Contour and surface plots illustrate these optimal conditions. This study highlights an innovative application of ternary ferrofluid with a magnetic dipole and employs RSM to optimize parameters for enhanced heat transfer performance, addressing a gap in existing literature and providing the way for further advancements in this field.
期刊介绍:
Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application.
The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.