Four-dimensional gradient Ricci solitons with (half) nonnegative isotropic curvature

IF 2.1 1区 数学 Q1 MATHEMATICS
Huai-Dong Cao , Junming Xie
{"title":"Four-dimensional gradient Ricci solitons with (half) nonnegative isotropic curvature","authors":"Huai-Dong Cao ,&nbsp;Junming Xie","doi":"10.1016/j.matpur.2025.103686","DOIUrl":null,"url":null,"abstract":"<div><div>This is a sequel to our paper <span><span>[24]</span></span>, in which we investigated the geometry of 4-dimensional gradient shrinking Ricci solitons with half positive (nonnegative) isotropic curvature. In this paper, we mainly focus on 4-dimensional gradient steady Ricci solitons with nonnegative isotropic curvature (WPIC) or half nonnegative isotropic curvature (half WPIC). In particular, for 4D complete <em>ancient solutions</em> with WPIC, we are able to prove the 2-nonnegativity of the Ricci curvature and bound the curvature tensor <em>Rm</em> by <span><math><mo>|</mo><mi>R</mi><mi>m</mi><mo>|</mo><mo>≤</mo><mi>R</mi></math></span>. For 4D gradient steady solitons with WPIC, we obtain a classification result. We also give a partial classification of 4D gradient steady Ricci solitons with half WPIC. Moreover, we obtain a preliminary classification result for 4D complete gradient <em>expanding Ricci solitons</em> with WPIC. Finally, motivated by the recent work <span><span>[59]</span></span>, we improve our earlier results in <span><span>[24]</span></span> on 4D gradient <em>shrinking Ricci solitons</em> with half PIC or half WPIC, and also provide a characterization of complete gradient Kähler-Ricci shrinkers in complex dimension two among 4-dimensional gradient Ricci shrinkers.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"197 ","pages":"Article 103686"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000303","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This is a sequel to our paper [24], in which we investigated the geometry of 4-dimensional gradient shrinking Ricci solitons with half positive (nonnegative) isotropic curvature. In this paper, we mainly focus on 4-dimensional gradient steady Ricci solitons with nonnegative isotropic curvature (WPIC) or half nonnegative isotropic curvature (half WPIC). In particular, for 4D complete ancient solutions with WPIC, we are able to prove the 2-nonnegativity of the Ricci curvature and bound the curvature tensor Rm by |Rm|R. For 4D gradient steady solitons with WPIC, we obtain a classification result. We also give a partial classification of 4D gradient steady Ricci solitons with half WPIC. Moreover, we obtain a preliminary classification result for 4D complete gradient expanding Ricci solitons with WPIC. Finally, motivated by the recent work [59], we improve our earlier results in [24] on 4D gradient shrinking Ricci solitons with half PIC or half WPIC, and also provide a characterization of complete gradient Kähler-Ricci shrinkers in complex dimension two among 4-dimensional gradient Ricci shrinkers.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信