(Re)Conceptualizing trustworthy AI: A foundation for change

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Christopher D. Wirz , Julie L. Demuth , Ann Bostrom , Mariana G. Cains , Imme Ebert-Uphoff , David John Gagne II , Andrea Schumacher , Amy McGovern , Deianna Madlambayan
{"title":"(Re)Conceptualizing trustworthy AI: A foundation for change","authors":"Christopher D. Wirz ,&nbsp;Julie L. Demuth ,&nbsp;Ann Bostrom ,&nbsp;Mariana G. Cains ,&nbsp;Imme Ebert-Uphoff ,&nbsp;David John Gagne II ,&nbsp;Andrea Schumacher ,&nbsp;Amy McGovern ,&nbsp;Deianna Madlambayan","doi":"10.1016/j.artint.2025.104309","DOIUrl":null,"url":null,"abstract":"<div><div>Developers and academics have grown increasingly interested in developing “trustworthy” artificial intelligence (AI). However, this aim is difficult to achieve in practice, especially given trust and trustworthiness are complex, multifaceted concepts that cannot be completely guaranteed nor built entirely into an AI system. We have drawn on the breadth of trust-related literature across multiple disciplines and fields to synthesize knowledge pertaining to interpersonal trust, trust in automation, and risk and trust. Based on this review we have (re)conceptualized trustworthiness in practice as being both (a) perceptual, meaning that a user assesses whether, when, and to what extent AI model output is trustworthy, even if it has been developed in adherence to AI trustworthiness standards, and (b) context-dependent, meaning that a user's perceived trustworthiness and use of an AI model can vary based on the specifics of their situation (e.g., time-pressures for decision-making, high-stakes decisions). We provide our reconceptualization to nuance how trustworthiness is thought about, studied, and evaluated by the AI community in ways that are more aligned with past theoretical research.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"342 ","pages":"Article 104309"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225000281","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Developers and academics have grown increasingly interested in developing “trustworthy” artificial intelligence (AI). However, this aim is difficult to achieve in practice, especially given trust and trustworthiness are complex, multifaceted concepts that cannot be completely guaranteed nor built entirely into an AI system. We have drawn on the breadth of trust-related literature across multiple disciplines and fields to synthesize knowledge pertaining to interpersonal trust, trust in automation, and risk and trust. Based on this review we have (re)conceptualized trustworthiness in practice as being both (a) perceptual, meaning that a user assesses whether, when, and to what extent AI model output is trustworthy, even if it has been developed in adherence to AI trustworthiness standards, and (b) context-dependent, meaning that a user's perceived trustworthiness and use of an AI model can vary based on the specifics of their situation (e.g., time-pressures for decision-making, high-stakes decisions). We provide our reconceptualization to nuance how trustworthiness is thought about, studied, and evaluated by the AI community in ways that are more aligned with past theoretical research.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信