End2end vehicle multitask perception in adverse weather

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Yifan Dai, Qiang Wang
{"title":"End2end vehicle multitask perception in adverse weather","authors":"Yifan Dai,&nbsp;Qiang Wang","doi":"10.1016/j.robot.2025.104945","DOIUrl":null,"url":null,"abstract":"<div><div>In the research of autonomous driving technology, due to the lack of datasets for various extreme weather conditions, autonomous driving perception in adverse weather is a challenge. To address this problem, this paper introduces an end-to-end multi-task perception system that combines labeled supervised learning and unsupervised domain adaptive learning for bad weather. The key innovations of this system include: a multi-task learning framework that simultaneously handles object detection, lane line detection, and drivable area detection, improving both efficiency and cost-effectiveness for autonomous driving in complex environments; a domain adaptation strategy using unlabeled data for adverse weather, which enables the system to perform robustly without requiring specific labels for harsh weather conditions; the system has strong generalization ability, demonstrated by achieving an prediction mAP of 83.86%, a drivable area mIoU of 91.59%, and lane detection accuracy of 83.9% on the BDD100K dataset, as well as an mAP of 74.85% on the Cityscapes fog dataset without additional training, highlighting its effectiveness in unseen, adverse conditions. The scalable and generalized solution provided in this paper can achieve high-performance navigation in various extreme environments. By combining supervised and unsupervised learning techniques, this model can not only cope with severe weather but also further generalize to unseen scenarios.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"188 ","pages":"Article 104945"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889025000314","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the research of autonomous driving technology, due to the lack of datasets for various extreme weather conditions, autonomous driving perception in adverse weather is a challenge. To address this problem, this paper introduces an end-to-end multi-task perception system that combines labeled supervised learning and unsupervised domain adaptive learning for bad weather. The key innovations of this system include: a multi-task learning framework that simultaneously handles object detection, lane line detection, and drivable area detection, improving both efficiency and cost-effectiveness for autonomous driving in complex environments; a domain adaptation strategy using unlabeled data for adverse weather, which enables the system to perform robustly without requiring specific labels for harsh weather conditions; the system has strong generalization ability, demonstrated by achieving an prediction mAP of 83.86%, a drivable area mIoU of 91.59%, and lane detection accuracy of 83.9% on the BDD100K dataset, as well as an mAP of 74.85% on the Cityscapes fog dataset without additional training, highlighting its effectiveness in unseen, adverse conditions. The scalable and generalized solution provided in this paper can achieve high-performance navigation in various extreme environments. By combining supervised and unsupervised learning techniques, this model can not only cope with severe weather but also further generalize to unseen scenarios.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信