Serkan Karakaya , İsmet Kaya , Feyza Kolcu , Yusuf Dilgin
{"title":"Application of a novel anthracene derivative polymer for sensitive voltammetric determination of chloramphenicol in pharmaceutical and food samples","authors":"Serkan Karakaya , İsmet Kaya , Feyza Kolcu , Yusuf Dilgin","doi":"10.1016/j.eurpolymj.2025.113863","DOIUrl":null,"url":null,"abstract":"<div><div>The application of new polymers for the preparation of modified electrodes is an interesting research area, which is highly significant in the electrochemical antibiotic drug sensors for food safety and environmental sides. Herein, we successfully report the synthesis of a new anthracene-based monomer (N1, N4-bis(anthracene-9-yl-methylene)-2,5-dichlorobenzene-1,4-diamine (ADCA) and Poly(ADCA) modified carbon-based electrode has been used in sensitive and selective differential pulse voltammetric determination of chloramphenicol (CPNL) for the first time. In this platform, the proposed monomer was successfully electro-polymerized onto a cheap, low-cost, and disposable pencil graphite electrode (PGE). The cyclic and differential pulse voltammetric experiments proved that the polymer-modified electrode Poly(ADCA)/PGE) has great electrocatalytic efficiency on the reduction of CPNL. The proposed platform shows a comparable performance in terms of wide linear ranges (2.0–100 and 100–1000 µM), a low detection limit (0.55 µM) and high sensitivity (11405 µA mM<sup>−1</sup> cm<sup>−2</sup>) by differential pulse voltammetry (DPV). Additionally, the Poly(ADCA)/PGE exhibited high selectivity and anti-interference facilities for the CPNL. The fabricated sensor showed a promising potential for the determination of CPNL in food (honey, and milk), bottled water, and pharmaceutical (eye ointment) samples with acceptable accuracies and precisions.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"229 ","pages":"Article 113863"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001430572500151X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The application of new polymers for the preparation of modified electrodes is an interesting research area, which is highly significant in the electrochemical antibiotic drug sensors for food safety and environmental sides. Herein, we successfully report the synthesis of a new anthracene-based monomer (N1, N4-bis(anthracene-9-yl-methylene)-2,5-dichlorobenzene-1,4-diamine (ADCA) and Poly(ADCA) modified carbon-based electrode has been used in sensitive and selective differential pulse voltammetric determination of chloramphenicol (CPNL) for the first time. In this platform, the proposed monomer was successfully electro-polymerized onto a cheap, low-cost, and disposable pencil graphite electrode (PGE). The cyclic and differential pulse voltammetric experiments proved that the polymer-modified electrode Poly(ADCA)/PGE) has great electrocatalytic efficiency on the reduction of CPNL. The proposed platform shows a comparable performance in terms of wide linear ranges (2.0–100 and 100–1000 µM), a low detection limit (0.55 µM) and high sensitivity (11405 µA mM−1 cm−2) by differential pulse voltammetry (DPV). Additionally, the Poly(ADCA)/PGE exhibited high selectivity and anti-interference facilities for the CPNL. The fabricated sensor showed a promising potential for the determination of CPNL in food (honey, and milk), bottled water, and pharmaceutical (eye ointment) samples with acceptable accuracies and precisions.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.