Guangyin Jin , Xiaohan Ni , Kun Wei , Jie Zhao , Haoming Zhang , Leiming Jia
{"title":"Will the technological singularity come soon? Modeling the dynamics of artificial intelligence development via multi-logistic growth process","authors":"Guangyin Jin , Xiaohan Ni , Kun Wei , Jie Zhao , Haoming Zhang , Leiming Jia","doi":"10.1016/j.physa.2025.130450","DOIUrl":null,"url":null,"abstract":"<div><div>We are currently in an era of escalating technological complexity and profound societal transformations, where artificial intelligence (AI) technologies exemplified by large language models (LLMs) have reignited discussions on the ‘Technological Singularity’. ‘Technological Singularity’ is a philosophical concept referring to an irreversible and profound transformation that occurs when AI capabilities surpass those of humans comprehensively. However, quantitative modeling and analysis of the historical evolution and future trends of AI technologies remain scarce, failing to substantiate the singularity hypothesis adequately. This paper hypothesizes that the development of AI technologies could be characterized by the superposition of multiple logistic growth processes. To explore this hypothesis, we propose a multi-logistic growth process model and validate it using two real-world datasets: AI Historical Statistics and Arxiv AI Papers. Our analysis of the AI Historical Statistics dataset assesses the effectiveness of the multi-logistic model and evaluates the current and future trends in AI technology development. Additionally, cross-validation experiments on the Arxiv AI Paper, GPU Transistor and Internet User dataset enhance the robustness of our conclusions derived from the AI Historical Statistics dataset. The experimental results reveal that around 2024 marks the fastest point of the current AI wave, and the deep learning-based AI technologies are projected to decline around 2035–2040 if no fundamental technological innovation emerges. Consequently, the technological singularity appears unlikely to arrive in the foreseeable future.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"664 ","pages":"Article 130450"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125001025","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We are currently in an era of escalating technological complexity and profound societal transformations, where artificial intelligence (AI) technologies exemplified by large language models (LLMs) have reignited discussions on the ‘Technological Singularity’. ‘Technological Singularity’ is a philosophical concept referring to an irreversible and profound transformation that occurs when AI capabilities surpass those of humans comprehensively. However, quantitative modeling and analysis of the historical evolution and future trends of AI technologies remain scarce, failing to substantiate the singularity hypothesis adequately. This paper hypothesizes that the development of AI technologies could be characterized by the superposition of multiple logistic growth processes. To explore this hypothesis, we propose a multi-logistic growth process model and validate it using two real-world datasets: AI Historical Statistics and Arxiv AI Papers. Our analysis of the AI Historical Statistics dataset assesses the effectiveness of the multi-logistic model and evaluates the current and future trends in AI technology development. Additionally, cross-validation experiments on the Arxiv AI Paper, GPU Transistor and Internet User dataset enhance the robustness of our conclusions derived from the AI Historical Statistics dataset. The experimental results reveal that around 2024 marks the fastest point of the current AI wave, and the deep learning-based AI technologies are projected to decline around 2035–2040 if no fundamental technological innovation emerges. Consequently, the technological singularity appears unlikely to arrive in the foreseeable future.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.