Human guided empathetic AI agent for mental health support leveraging reinforcement learning-enhanced retrieval-augmented generation

IF 2.1 3区 心理学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Gayathri Soman, M.V. Judy, Aadhil Muhammad Abou
{"title":"Human guided empathetic AI agent for mental health support leveraging reinforcement learning-enhanced retrieval-augmented generation","authors":"Gayathri Soman,&nbsp;M.V. Judy,&nbsp;Aadhil Muhammad Abou","doi":"10.1016/j.cogsys.2025.101337","DOIUrl":null,"url":null,"abstract":"<div><div>Global mental health issues is increasing due to problems such as the social stigma around treatment, a long-neglected burdens of insufficient resources, and the rising tide of mental issues. Large language models (LLMs) can accelerate the development of comprehensive, extensive solutions that support mental health. However, the LLMs’ capability to generate and comprehend human-like conversations is one of the main challenges faced by psychiatric counselling. This work proposes a mental health counselling LLM-based conversational agent that relies on the integration of Retrieval Augmented Generation (RAG) and Reinforcement learning. RAG provides the proposed LLM-based conversational agent with contextually relevant and accurate responses through useful information extracted from a curated dataset of psychological questions and answers pooled from mental health forums. Reinforcement Learning Integrated reward Model trained with Human feedback has also been used in the proposed framework to ensure contractually of the responses generated with moral and human values. By setting up a reward mechanism that considers variables like user feedback and empathetic scores of responses, the proposed Conversational Agent learns to prioritize empathetic answers and the ones that are user preferable. With the utilization of reward-based training, the agent was able to show substantial improvements in response quality. Improved emotional alignment, steady training dynamics, decreased hallucination rates with responses having less distress and increased empathy values were the significant outcomes. The proposed methodology ensures that the conversational agent remains attentive to the emotional requirements of people seeking for mental health care and provide improved relevance and accuracy in its responses.</div></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"90 ","pages":"Article 101337"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041725000178","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Global mental health issues is increasing due to problems such as the social stigma around treatment, a long-neglected burdens of insufficient resources, and the rising tide of mental issues. Large language models (LLMs) can accelerate the development of comprehensive, extensive solutions that support mental health. However, the LLMs’ capability to generate and comprehend human-like conversations is one of the main challenges faced by psychiatric counselling. This work proposes a mental health counselling LLM-based conversational agent that relies on the integration of Retrieval Augmented Generation (RAG) and Reinforcement learning. RAG provides the proposed LLM-based conversational agent with contextually relevant and accurate responses through useful information extracted from a curated dataset of psychological questions and answers pooled from mental health forums. Reinforcement Learning Integrated reward Model trained with Human feedback has also been used in the proposed framework to ensure contractually of the responses generated with moral and human values. By setting up a reward mechanism that considers variables like user feedback and empathetic scores of responses, the proposed Conversational Agent learns to prioritize empathetic answers and the ones that are user preferable. With the utilization of reward-based training, the agent was able to show substantial improvements in response quality. Improved emotional alignment, steady training dynamics, decreased hallucination rates with responses having less distress and increased empathy values were the significant outcomes. The proposed methodology ensures that the conversational agent remains attentive to the emotional requirements of people seeking for mental health care and provide improved relevance and accuracy in its responses.
利用强化学习-增强检索-增强生成的人类引导的心理健康支持移情人工智能代理
由于围绕治疗的社会污名、长期被忽视的资源不足负担以及精神问题日益增多等问题,全球精神卫生问题正在增加。大型语言模型(llm)可以加速开发支持心理健康的全面、广泛的解决方案。然而,法学硕士产生和理解类似人类对话的能力是精神病学咨询面临的主要挑战之一。本研究提出了一种基于检索增强生成(RAG)和强化学习集成的心理健康咨询会话代理。RAG通过从心理健康论坛汇集的心理问题和答案的精心策划的数据集中提取有用的信息,为拟议的基于llm的会话代理提供上下文相关和准确的响应。强化学习与人类反馈训练的综合奖励模型也被用于拟议的框架中,以确保道德和人类价值观产生的反应的一致性。通过建立一个奖励机制,考虑到用户反馈和反应的同理心分数等变量,提议的会话代理学会优先考虑同理心的答案和用户更喜欢的答案。利用基于奖励的训练,智能体在响应质量上有了实质性的提高。改善的情绪一致性,稳定的训练动力,减少幻觉率,反应更少的痛苦和增加共情值是显著的结果。所提出的方法确保对话代理始终关注寻求精神卫生保健的人的情感需求,并在其响应中提供改进的相关性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Systems Research
Cognitive Systems Research 工程技术-计算机:人工智能
CiteScore
9.40
自引率
5.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial. The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition. Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信