Immunogenic cuproptosis in cancer immunotherapy via an in situ cuproptosis-inducing system

IF 12.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Jiehan Li , Ge Zhang , Zhao Sun , Meimei Jiang , Guiyun Jia , Hao Liu , Nannan Liu , Liyang Shi , Lingling Zhang , Liming Nie , Yingjie Zhang , Yang Fu
{"title":"Immunogenic cuproptosis in cancer immunotherapy via an in situ cuproptosis-inducing system","authors":"Jiehan Li ,&nbsp;Ge Zhang ,&nbsp;Zhao Sun ,&nbsp;Meimei Jiang ,&nbsp;Guiyun Jia ,&nbsp;Hao Liu ,&nbsp;Nannan Liu ,&nbsp;Liyang Shi ,&nbsp;Lingling Zhang ,&nbsp;Liming Nie ,&nbsp;Yingjie Zhang ,&nbsp;Yang Fu","doi":"10.1016/j.biomaterials.2025.123201","DOIUrl":null,"url":null,"abstract":"<div><div>Cell death-based therapies combined with immunotherapy have great potential in cancer therapy. To further explore and apply the combined therapies, the immunogenicity of different cell death modes in colorectal cancer (CRC) was evaluated by a cause-and-effect framework encompassing 12 cell death modes. Results show robust correlations among cuproptosis, immunogenic cell death (ICD) and immunity in CRC, as observed in our in-house and other independent cohorts, which are substantiated by <em>in vitro</em> and <em>in vivo</em> experiments. Subsequent investigations demonstrate that cuproptosis induces endoplasmic reticulum stress, leading to the release of damage-associated molecular patterns from CRC cells and triggering the maturation of antigen-presenting cells. Moreover, for <em>in vivo</em> therapeutic approaches, an in situ cuproptosis-inducing system was devised, which can further strengthen the effects of immune cells. Through the combined analysis including single-cell RNA sequencing, cuproptosis is shown to mobilize cytotoxic T lymphocytes and M1 macrophages within the tumor microenvironment (TME). Additionally, co-treatment with Imiquimod, the TLR7 agonist, augments the anti-tumor immune responses induced by cuproptosis. Overall, we provide compelling evidence that cuproptosis induces ICD thus fostering an inflammatory TME, and the cuproptosis-based delivery system further promotes this inflammatory environment, demonstrating considerable potential for enhancing tumor therapy efficacy.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"319 ","pages":"Article 123201"},"PeriodicalIF":12.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225001206","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cell death-based therapies combined with immunotherapy have great potential in cancer therapy. To further explore and apply the combined therapies, the immunogenicity of different cell death modes in colorectal cancer (CRC) was evaluated by a cause-and-effect framework encompassing 12 cell death modes. Results show robust correlations among cuproptosis, immunogenic cell death (ICD) and immunity in CRC, as observed in our in-house and other independent cohorts, which are substantiated by in vitro and in vivo experiments. Subsequent investigations demonstrate that cuproptosis induces endoplasmic reticulum stress, leading to the release of damage-associated molecular patterns from CRC cells and triggering the maturation of antigen-presenting cells. Moreover, for in vivo therapeutic approaches, an in situ cuproptosis-inducing system was devised, which can further strengthen the effects of immune cells. Through the combined analysis including single-cell RNA sequencing, cuproptosis is shown to mobilize cytotoxic T lymphocytes and M1 macrophages within the tumor microenvironment (TME). Additionally, co-treatment with Imiquimod, the TLR7 agonist, augments the anti-tumor immune responses induced by cuproptosis. Overall, we provide compelling evidence that cuproptosis induces ICD thus fostering an inflammatory TME, and the cuproptosis-based delivery system further promotes this inflammatory environment, demonstrating considerable potential for enhancing tumor therapy efficacy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信