Development and validation of a highly-sensitive, quantitative LC-MS/MS assay to evaluate plasma oxytocin

IF 3.1 4区 医学 Q2 MEDICAL LABORATORY TECHNOLOGY
E. Grifnée , A. Mackowiak , J. Demeuse , M. Schoumacher , L. Huyghebaert , W. Determe , T. Dubrowski , P. Massonnet , S. Peeters , G. Scantamburlo , E. Cavalier , C.Le Goff
{"title":"Development and validation of a highly-sensitive, quantitative LC-MS/MS assay to evaluate plasma oxytocin","authors":"E. Grifnée ,&nbsp;A. Mackowiak ,&nbsp;J. Demeuse ,&nbsp;M. Schoumacher ,&nbsp;L. Huyghebaert ,&nbsp;W. Determe ,&nbsp;T. Dubrowski ,&nbsp;P. Massonnet ,&nbsp;S. Peeters ,&nbsp;G. Scantamburlo ,&nbsp;E. Cavalier ,&nbsp;C.Le Goff","doi":"10.1016/j.jmsacl.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Oxytocin is a 9-amino acid peptide that serves as neuromodulator in the human central nervous system. This peptide is implicated in the regulation of diverse behaviors and plays a significant role in positive social interaction. Currently, oxytocin levels are measured using immunoassays. However, these methods have several limitations that can lead to false results and erroneous interpretation. Given the remarkably low endogenous level of oxytocin in human plasma (low ng/L levels), we developed and rigorously validated a novel and highly sensitive LC-MS/MS method for oxytocin quantification in plasma.</div></div><div><h3>Methods</h3><div>Oxytocin was initially extracted using solid-phase extraction with an Oasis HLB 30 mg plate and then subjected to LC-MS/MS analysis. PBS-0.1 % BSA served as surrogate matrix for the preparation of validation samples and the calibration curve, ensuring no endogenous interference. The validation design followed the Clinical Laboratory Standards Institute guidelines. Precision, accuracy, and measurement uncertainty were determined using single-nested analysis of variance and e.noval software.</div></div><div><h3>Results</h3><div>A lower limit of quantification of 1 ng/L was achieved. The method was validated for oxytocin concentrations ranging from 1 ng/L to 75 ng/L, with precision (coefficient of variation) below 10 %, accuracy ranging from 94 % to 108 %, and measurement uncertainty below 15 %.</div></div><div><h3>Conclusion</h3><div>In this work, we developed and validated a highly sensitive LC-MS/MS method for the quantification of oxytocin in plasma. Our novel methodology is well-suited for clinical applications.</div></div>","PeriodicalId":52406,"journal":{"name":"Journal of Mass Spectrometry and Advances in the Clinical Lab","volume":"36 ","pages":"Pages 19-28"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry and Advances in the Clinical Lab","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667145X25000057","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Oxytocin is a 9-amino acid peptide that serves as neuromodulator in the human central nervous system. This peptide is implicated in the regulation of diverse behaviors and plays a significant role in positive social interaction. Currently, oxytocin levels are measured using immunoassays. However, these methods have several limitations that can lead to false results and erroneous interpretation. Given the remarkably low endogenous level of oxytocin in human plasma (low ng/L levels), we developed and rigorously validated a novel and highly sensitive LC-MS/MS method for oxytocin quantification in plasma.

Methods

Oxytocin was initially extracted using solid-phase extraction with an Oasis HLB 30 mg plate and then subjected to LC-MS/MS analysis. PBS-0.1 % BSA served as surrogate matrix for the preparation of validation samples and the calibration curve, ensuring no endogenous interference. The validation design followed the Clinical Laboratory Standards Institute guidelines. Precision, accuracy, and measurement uncertainty were determined using single-nested analysis of variance and e.noval software.

Results

A lower limit of quantification of 1 ng/L was achieved. The method was validated for oxytocin concentrations ranging from 1 ng/L to 75 ng/L, with precision (coefficient of variation) below 10 %, accuracy ranging from 94 % to 108 %, and measurement uncertainty below 15 %.

Conclusion

In this work, we developed and validated a highly sensitive LC-MS/MS method for the quantification of oxytocin in plasma. Our novel methodology is well-suited for clinical applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mass Spectrometry and Advances in the Clinical Lab
Journal of Mass Spectrometry and Advances in the Clinical Lab Health Professions-Medical Laboratory Technology
CiteScore
4.30
自引率
18.20%
发文量
41
审稿时长
81 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信