Dissolved iron release by sediment and dust particles in Antarctic seawater greater than glacial flour and sea-ice particles

IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Matthew Corkill , Klaus Martin Meiners , Pat Wongpan , Pier van der Merwe , Layla Creac'h , Sandrin Feig , Talitha Nelson , Abigail Jessica Rose Smith , Ashley T. Townsend , Samantha Twiname , Delphine Lannuzel
{"title":"Dissolved iron release by sediment and dust particles in Antarctic seawater greater than glacial flour and sea-ice particles","authors":"Matthew Corkill ,&nbsp;Klaus Martin Meiners ,&nbsp;Pat Wongpan ,&nbsp;Pier van der Merwe ,&nbsp;Layla Creac'h ,&nbsp;Sandrin Feig ,&nbsp;Talitha Nelson ,&nbsp;Abigail Jessica Rose Smith ,&nbsp;Ashley T. Townsend ,&nbsp;Samantha Twiname ,&nbsp;Delphine Lannuzel","doi":"10.1016/j.marchem.2025.104509","DOIUrl":null,"url":null,"abstract":"<div><div>Primary productivity by phytoplankton in the Southern Ocean can be limited by low iron concentrations. Iron limitation in the surface ocean around Antarctica may be alleviated by particle dissolution of dust from exposed rock, glacial flour, resuspended marine sediment, and sea ice. Ligands, which are ubiquitous in seawater, chelate some metals and keep them in solution. Ligands are thereby thought to increase metal solubility, including iron. Leaching studies of Antarctic particles from various sources are rare but important due to observed and predicted changes occurring around Antarctica, e.g., changes in sea ice and ice-free areas on the continent. Here, we quantified the solubility of iron in different particle types using vertical flow-through leaching experiments that simulated sinking through the water column and ran for 78 min of flow at 4 °C under trace metal-clean conditions. Both unaltered and ultraviolet-irradiated seawater leaching solution treatments were used to test the effect of organic ligands on iron dissolution, which was found to be non-significant. Sediment and dust released the most dissolved iron to seawater, followed by glacial flour, and then sea-ice particles (9.00 ± 9.92 × 10<sup>−2</sup> and 3.18 ± 3.79 × 10<sup>−2</sup>, 1.97 ± 1.79 × 10<sup>−4</sup>, 1.37 ± 0.90 × 10<sup>−9</sup> g DFe/100 g material, respectively). We discuss these laboratory results in relation to particle availability and how this may affect the supply of dissolved iron to Antarctic surface waters.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"270 ","pages":"Article 104509"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Chemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304420325000246","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Primary productivity by phytoplankton in the Southern Ocean can be limited by low iron concentrations. Iron limitation in the surface ocean around Antarctica may be alleviated by particle dissolution of dust from exposed rock, glacial flour, resuspended marine sediment, and sea ice. Ligands, which are ubiquitous in seawater, chelate some metals and keep them in solution. Ligands are thereby thought to increase metal solubility, including iron. Leaching studies of Antarctic particles from various sources are rare but important due to observed and predicted changes occurring around Antarctica, e.g., changes in sea ice and ice-free areas on the continent. Here, we quantified the solubility of iron in different particle types using vertical flow-through leaching experiments that simulated sinking through the water column and ran for 78 min of flow at 4 °C under trace metal-clean conditions. Both unaltered and ultraviolet-irradiated seawater leaching solution treatments were used to test the effect of organic ligands on iron dissolution, which was found to be non-significant. Sediment and dust released the most dissolved iron to seawater, followed by glacial flour, and then sea-ice particles (9.00 ± 9.92 × 10−2 and 3.18 ± 3.79 × 10−2, 1.97 ± 1.79 × 10−4, 1.37 ± 0.90 × 10−9 g DFe/100 g material, respectively). We discuss these laboratory results in relation to particle availability and how this may affect the supply of dissolved iron to Antarctic surface waters.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Chemistry
Marine Chemistry 化学-海洋学
CiteScore
6.00
自引率
3.30%
发文量
70
审稿时长
4.5 months
期刊介绍: Marine Chemistry is an international medium for the publication of original studies and occasional reviews in the field of chemistry in the marine environment, with emphasis on the dynamic approach. The journal endeavours to cover all aspects, from chemical processes to theoretical and experimental work, and, by providing a central channel of communication, to speed the flow of information in this relatively new and rapidly expanding discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信