Matthew Corkill , Klaus Martin Meiners , Pat Wongpan , Pier van der Merwe , Layla Creac'h , Sandrin Feig , Talitha Nelson , Abigail Jessica Rose Smith , Ashley T. Townsend , Samantha Twiname , Delphine Lannuzel
{"title":"Dissolved iron release by sediment and dust particles in Antarctic seawater greater than glacial flour and sea-ice particles","authors":"Matthew Corkill , Klaus Martin Meiners , Pat Wongpan , Pier van der Merwe , Layla Creac'h , Sandrin Feig , Talitha Nelson , Abigail Jessica Rose Smith , Ashley T. Townsend , Samantha Twiname , Delphine Lannuzel","doi":"10.1016/j.marchem.2025.104509","DOIUrl":null,"url":null,"abstract":"<div><div>Primary productivity by phytoplankton in the Southern Ocean can be limited by low iron concentrations. Iron limitation in the surface ocean around Antarctica may be alleviated by particle dissolution of dust from exposed rock, glacial flour, resuspended marine sediment, and sea ice. Ligands, which are ubiquitous in seawater, chelate some metals and keep them in solution. Ligands are thereby thought to increase metal solubility, including iron. Leaching studies of Antarctic particles from various sources are rare but important due to observed and predicted changes occurring around Antarctica, e.g., changes in sea ice and ice-free areas on the continent. Here, we quantified the solubility of iron in different particle types using vertical flow-through leaching experiments that simulated sinking through the water column and ran for 78 min of flow at 4 °C under trace metal-clean conditions. Both unaltered and ultraviolet-irradiated seawater leaching solution treatments were used to test the effect of organic ligands on iron dissolution, which was found to be non-significant. Sediment and dust released the most dissolved iron to seawater, followed by glacial flour, and then sea-ice particles (9.00 ± 9.92 × 10<sup>−2</sup> and 3.18 ± 3.79 × 10<sup>−2</sup>, 1.97 ± 1.79 × 10<sup>−4</sup>, 1.37 ± 0.90 × 10<sup>−9</sup> g DFe/100 g material, respectively). We discuss these laboratory results in relation to particle availability and how this may affect the supply of dissolved iron to Antarctic surface waters.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"270 ","pages":"Article 104509"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Chemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304420325000246","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Primary productivity by phytoplankton in the Southern Ocean can be limited by low iron concentrations. Iron limitation in the surface ocean around Antarctica may be alleviated by particle dissolution of dust from exposed rock, glacial flour, resuspended marine sediment, and sea ice. Ligands, which are ubiquitous in seawater, chelate some metals and keep them in solution. Ligands are thereby thought to increase metal solubility, including iron. Leaching studies of Antarctic particles from various sources are rare but important due to observed and predicted changes occurring around Antarctica, e.g., changes in sea ice and ice-free areas on the continent. Here, we quantified the solubility of iron in different particle types using vertical flow-through leaching experiments that simulated sinking through the water column and ran for 78 min of flow at 4 °C under trace metal-clean conditions. Both unaltered and ultraviolet-irradiated seawater leaching solution treatments were used to test the effect of organic ligands on iron dissolution, which was found to be non-significant. Sediment and dust released the most dissolved iron to seawater, followed by glacial flour, and then sea-ice particles (9.00 ± 9.92 × 10−2 and 3.18 ± 3.79 × 10−2, 1.97 ± 1.79 × 10−4, 1.37 ± 0.90 × 10−9 g DFe/100 g material, respectively). We discuss these laboratory results in relation to particle availability and how this may affect the supply of dissolved iron to Antarctic surface waters.
期刊介绍:
Marine Chemistry is an international medium for the publication of original studies and occasional reviews in the field of chemistry in the marine environment, with emphasis on the dynamic approach. The journal endeavours to cover all aspects, from chemical processes to theoretical and experimental work, and, by providing a central channel of communication, to speed the flow of information in this relatively new and rapidly expanding discipline.