Planar fibre winding for topological optimized composite structures

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
O. Döbrich, S. Steiner, P. Böhler, R. Radis
{"title":"Planar fibre winding for topological optimized composite structures","authors":"O. Döbrich,&nbsp;S. Steiner,&nbsp;P. Böhler,&nbsp;R. Radis","doi":"10.1016/j.jcomc.2024.100545","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional manufacturing techniques for composites are constrained by the shell design realized from laminated materials. The layer-wise architecture limits their use in complex 3D geometries and leads to uneven structural performance in multi-axial load scenarios. This study introduces a novel planar fibre-winding process for manufacturing topologically optimized composite structures. The proposed method utilizes a continuous process where a carbon fibre roving is wound onto a complex 3D printed winding core. This approach enables the creation of a truss-like structure that closely follows the optimal load paths. The winding process is automated using a 3-axis gantry system, allowing precise fibre placement to form spatially complex structures. The mechanical performance of a complex wound structures was evaluated against traditionally milled aluminium parts. Tensile testing of dry rovings and composite samples provide insights into the effects of process-induced damage on the mechanical performance of the composites. Significant performance improvements compared to conventional metal component design is achieved. The composite structures showed a 55 % reduction in weight compared to milled aluminium components, while achieving a 160 % increase in specific stiffness in out-of-plane bending tests. The process also demonstrates high reproducibility and minimized material waste. The advanced fibre-winding process offers a promising composite manufacturing technique.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"16 ","pages":"Article 100545"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024001142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional manufacturing techniques for composites are constrained by the shell design realized from laminated materials. The layer-wise architecture limits their use in complex 3D geometries and leads to uneven structural performance in multi-axial load scenarios. This study introduces a novel planar fibre-winding process for manufacturing topologically optimized composite structures. The proposed method utilizes a continuous process where a carbon fibre roving is wound onto a complex 3D printed winding core. This approach enables the creation of a truss-like structure that closely follows the optimal load paths. The winding process is automated using a 3-axis gantry system, allowing precise fibre placement to form spatially complex structures. The mechanical performance of a complex wound structures was evaluated against traditionally milled aluminium parts. Tensile testing of dry rovings and composite samples provide insights into the effects of process-induced damage on the mechanical performance of the composites. Significant performance improvements compared to conventional metal component design is achieved. The composite structures showed a 55 % reduction in weight compared to milled aluminium components, while achieving a 160 % increase in specific stiffness in out-of-plane bending tests. The process also demonstrates high reproducibility and minimized material waste. The advanced fibre-winding process offers a promising composite manufacturing technique.
平面纤维缠绕拓扑优化复合材料结构
传统的复合材料制造技术受到层压材料外壳设计的限制。分层结构限制了它们在复杂3D几何形状中的使用,并导致多轴载荷场景下结构性能不均匀。本文介绍了一种新型的平面纤维缠绕工艺,用于制造拓扑优化的复合材料结构。所提出的方法采用连续工艺,其中碳纤维粗纱缠绕在复杂的3D打印缠绕芯上。这种方法可以创建一个类似桁架的结构,紧密遵循最佳负载路径。卷绕过程使用3轴龙门系统自动化,允许精确的纤维放置形成空间复杂的结构。复杂缠绕结构的机械性能与传统铣削铝件进行了评估。干粗纱和复合材料样品的拉伸测试提供了对过程引起的损伤对复合材料力学性能影响的见解。与传统的金属部件设计相比,实现了显著的性能改进。与铣削铝构件相比,复合材料结构的重量减轻了55%,而在面外弯曲测试中,比刚度增加了160%。该工艺还显示出高重复性和最小化材料浪费。先进的纤维缠绕工艺是一种很有前途的复合材料制造技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信