Jiawen Tao , Yirong Sun , Guoliang Wang , Jingru Sun , Shujun Dong , Jianxun Ding
{"title":"Advanced biomaterials for targeting mature biofilms in periodontitis therapy","authors":"Jiawen Tao , Yirong Sun , Guoliang Wang , Jingru Sun , Shujun Dong , Jianxun Ding","doi":"10.1016/j.bioactmat.2025.02.026","DOIUrl":null,"url":null,"abstract":"<div><div>Periodontitis is a chronic inflammatory disease primarily caused by bacteria, leading to inflamed and bleeding gums, periodontal pocket formation, and bone loss. Affecting 70%–90% of adults over 65, periodontitis is a leading cause of tooth loss and significantly impacts quality of life. Standard treatments, including subgingival scraping and antibiotics, have limitations, and antibiotic resistance among periodontal pathogens is an increasing concern. Biofilms are barriers to drugs and immune responses, contributing to bacterial resistance and reducing antibiotic effectiveness. Due to their adjustable physicochemical properties, bioactive materials potentially eliminate bacterial biofilms, presenting a promising alternative for periodontitis therapy. In this review, the recent innovations in biomaterials for removing mature biofilms in periodontitis are examined, and their broader potential is discussed. Additionally, the compositions of bacterial biofilms, formation pathways, and intrinsic drug resistance mechanisms are discussed. Finally, the strategies for optimizing subgingival biofilm removal in periodontitis are highlighted, such as targeting biofilms-embedded bacteria, disrupting the extracellular polymeric substances, and utilizing combined approaches. A comprehensive understanding of the properties of biomaterials guides the rational design of highly targeted and effective therapies for periodontitis.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"48 ","pages":"Pages 474-492"},"PeriodicalIF":18.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000817","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Periodontitis is a chronic inflammatory disease primarily caused by bacteria, leading to inflamed and bleeding gums, periodontal pocket formation, and bone loss. Affecting 70%–90% of adults over 65, periodontitis is a leading cause of tooth loss and significantly impacts quality of life. Standard treatments, including subgingival scraping and antibiotics, have limitations, and antibiotic resistance among periodontal pathogens is an increasing concern. Biofilms are barriers to drugs and immune responses, contributing to bacterial resistance and reducing antibiotic effectiveness. Due to their adjustable physicochemical properties, bioactive materials potentially eliminate bacterial biofilms, presenting a promising alternative for periodontitis therapy. In this review, the recent innovations in biomaterials for removing mature biofilms in periodontitis are examined, and their broader potential is discussed. Additionally, the compositions of bacterial biofilms, formation pathways, and intrinsic drug resistance mechanisms are discussed. Finally, the strategies for optimizing subgingival biofilm removal in periodontitis are highlighted, such as targeting biofilms-embedded bacteria, disrupting the extracellular polymeric substances, and utilizing combined approaches. A comprehensive understanding of the properties of biomaterials guides the rational design of highly targeted and effective therapies for periodontitis.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.