Dimitri Leemans , Klara Stokes , Philippe Tranchida
{"title":"Flag transitive geometries with trialities and no dualities coming from Suzuki groups","authors":"Dimitri Leemans , Klara Stokes , Philippe Tranchida","doi":"10.1016/j.jcta.2025.106033","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, Leemans and Stokes constructed an infinite family of incidence geometries admitting trialities but no dualities from the groups <span><math><mi>P</mi><mi>S</mi><mi>L</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> (where <span><math><mi>q</mi><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn><mi>n</mi></mrow></msup></math></span> with <em>p</em> a prime and <span><math><mi>n</mi><mo>></mo><mn>0</mn></math></span> a positive integer). Unfortunately, these geometries are not flag transitive. In this paper, we work with the Suzuki groups <span><math><mi>S</mi><mi>z</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, where <span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>e</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> with <em>e</em> a positive integer and <span><math><mn>2</mn><mi>e</mi><mo>+</mo><mn>1</mn></math></span> is divisible by 3. For any odd integer <em>m</em> dividing <span><math><mi>q</mi><mo>−</mo><mn>1</mn></math></span>, <span><math><mi>q</mi><mo>+</mo><msqrt><mrow><mn>2</mn><mi>q</mi></mrow></msqrt><mo>+</mo><mn>1</mn></math></span> or <span><math><mi>q</mi><mo>−</mo><msqrt><mrow><mn>2</mn><mi>q</mi></mrow></msqrt><mo>+</mo><mn>1</mn></math></span> (i.e.: <em>m</em> is the order of some non-involutive element of <span><math><mi>S</mi><mi>z</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>), we construct geometries of type <span><math><mo>(</mo><mi>m</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> that admit trialities but no dualities. We then prove that they are flag transitive when <span><math><mi>m</mi><mo>=</mo><mn>5</mn></math></span>, no matter the value of <em>q</em>. These geometries form the first infinite family of incidence geometries of rank 3 that are flag transitive and have trialities but no dualities. They are constructed using chamber systems and the trialities come from field automorphisms. These same geometries can also be considered as regular hypermaps with automorphism group <span><math><mi>S</mi><mi>z</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106033"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000287","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, Leemans and Stokes constructed an infinite family of incidence geometries admitting trialities but no dualities from the groups (where with p a prime and a positive integer). Unfortunately, these geometries are not flag transitive. In this paper, we work with the Suzuki groups , where with e a positive integer and is divisible by 3. For any odd integer m dividing , or (i.e.: m is the order of some non-involutive element of ), we construct geometries of type that admit trialities but no dualities. We then prove that they are flag transitive when , no matter the value of q. These geometries form the first infinite family of incidence geometries of rank 3 that are flag transitive and have trialities but no dualities. They are constructed using chamber systems and the trialities come from field automorphisms. These same geometries can also be considered as regular hypermaps with automorphism group .
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.