Clarissa Ileana L. Ilao , Joan Cecilia C. Casila , Tonni Agustiono Kurniawan , Ronnie S. Sampang , Lars Lerry T. Panganiban , Liza B. Patacsil , Jomel S. Limbago
{"title":"Assessment of microplastics and heavy metal contamination in surficial sediments of Pasig River, Philippines during wet season","authors":"Clarissa Ileana L. Ilao , Joan Cecilia C. Casila , Tonni Agustiono Kurniawan , Ronnie S. Sampang , Lars Lerry T. Panganiban , Liza B. Patacsil , Jomel S. Limbago","doi":"10.1016/j.jconhyd.2025.104527","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the contamination of microplastics (MPs) and heavy metals in surficial sediments of the Pasig River, Philippines, during the wet season. This season, marked by heightened rainfall, runoff, and stormwater flow, potentially enhances the dispersion and accumulation of pollutants, leading to elevated pollution levels. MPs and heavy metals pose significant threats to aquatic ecosystems and human health, and their accumulation in river sediments warrants urgent attention. Samples were collected from multiple sites along the river, focusing on sediment composition, to analyze MP abundance and heavy metal concentrations. Results revealed high concentrations of MPs, predominantly polyester, polyethylene and acrylonitrile-butadiene copolymer, and heavy metals which were significantly higher in urbanized areas. MPs were found at all sampling locations, ranging from 2700 to 28,250 particles per kilogram of sediments. Heavy metals in the sediments varied, with concentrations of Cd (<0.003 mg/kg), Pb (3.09–50.48 mg/kg), Zn (53.37–175.74 mg/kg), and Fe (11,629–25,687 mg/kg), in the order Fe > Zn > Pb > Cd. According to the Hong Kong-Interim Sediment Quality Values criteria, the sediments were not contaminated by Cd, Pb, and Zn. Correlations between MP abundance and metals were found to be moderate for Pb and Zn but low for Fe, suggesting complex pollution dynamics. These findings emphasize the need for comprehensive monitoring and targeted waste management strategies to address MPs and heavy metal pollution, particularly during the wet season. Identifying MPs polymer types and their possible pollution sources provides valuable data to mitigate sediment contamination and protect aquatic ecosystems and human health.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"270 ","pages":"Article 104527"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772225000324","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the contamination of microplastics (MPs) and heavy metals in surficial sediments of the Pasig River, Philippines, during the wet season. This season, marked by heightened rainfall, runoff, and stormwater flow, potentially enhances the dispersion and accumulation of pollutants, leading to elevated pollution levels. MPs and heavy metals pose significant threats to aquatic ecosystems and human health, and their accumulation in river sediments warrants urgent attention. Samples were collected from multiple sites along the river, focusing on sediment composition, to analyze MP abundance and heavy metal concentrations. Results revealed high concentrations of MPs, predominantly polyester, polyethylene and acrylonitrile-butadiene copolymer, and heavy metals which were significantly higher in urbanized areas. MPs were found at all sampling locations, ranging from 2700 to 28,250 particles per kilogram of sediments. Heavy metals in the sediments varied, with concentrations of Cd (<0.003 mg/kg), Pb (3.09–50.48 mg/kg), Zn (53.37–175.74 mg/kg), and Fe (11,629–25,687 mg/kg), in the order Fe > Zn > Pb > Cd. According to the Hong Kong-Interim Sediment Quality Values criteria, the sediments were not contaminated by Cd, Pb, and Zn. Correlations between MP abundance and metals were found to be moderate for Pb and Zn but low for Fe, suggesting complex pollution dynamics. These findings emphasize the need for comprehensive monitoring and targeted waste management strategies to address MPs and heavy metal pollution, particularly during the wet season. Identifying MPs polymer types and their possible pollution sources provides valuable data to mitigate sediment contamination and protect aquatic ecosystems and human health.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.