Machine learning in additive manufacturing: A comprehensive insight

Q1 Engineering
Md Asif Equbal , Azhar Equbal , Zahid A. Khan , Irfan Anjum Badruddin
{"title":"Machine learning in additive manufacturing: A comprehensive insight","authors":"Md Asif Equbal ,&nbsp;Azhar Equbal ,&nbsp;Zahid A. Khan ,&nbsp;Irfan Anjum Badruddin","doi":"10.1016/j.ijlmm.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing (AM) is a technological advancement gaining colossal popularity due to its advantages and simplified fabrication. AM facilitates the manufacturing of complex, light, and strong products from digitized designs. With recent advancements, AM can bring digital flexibility and improved efficiency to industrial operations. Despite the various advantages, there is continuous variation in the qualities of AM products, which remains the main challenge in the wide application of AM. The performance of printed parts is directly influenced by processing parameters, and adjusting the parameters in the AM process can be quite challenging. The barrier can be minimized by proper monitoring of the AM process and precise measurement of AM materials and components, which is difficult to achieve through analytical and numerical models. Current research demonstrates machine learning (ML) and its techniques as a novel way to reduce costs. It also helps achieve optimal process design and part quality using the fundamentals of the AM process. ML is a subcategory of artificial intelligence (AI) that enables systems to learn and improve from measured data and past experiences. The present paper is focused on presenting a broad understanding of the current applications of ML in AM and thus provides a solid background for practitioners and researchers to apply ML in AM. Very few earlier reviews were presented before, but their studies mostly focus on artificial neural network technology and other irrelevant papers. In addition, most papers were published in 2021 and 2022 and were not discussed in earlier reviews. This state-of-the-art review is based on the latest database collected from Web of Science (WoS), Publons, Scopus, and Google Scholar using machine learning and additive manufacturing as the keywords. Extensive information collected on the possible applications of ML in AM shows that ML can be effectively applied to improve AM part quality and process reliability.</div></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"8 2","pages":"Pages 264-284"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840424000933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing (AM) is a technological advancement gaining colossal popularity due to its advantages and simplified fabrication. AM facilitates the manufacturing of complex, light, and strong products from digitized designs. With recent advancements, AM can bring digital flexibility and improved efficiency to industrial operations. Despite the various advantages, there is continuous variation in the qualities of AM products, which remains the main challenge in the wide application of AM. The performance of printed parts is directly influenced by processing parameters, and adjusting the parameters in the AM process can be quite challenging. The barrier can be minimized by proper monitoring of the AM process and precise measurement of AM materials and components, which is difficult to achieve through analytical and numerical models. Current research demonstrates machine learning (ML) and its techniques as a novel way to reduce costs. It also helps achieve optimal process design and part quality using the fundamentals of the AM process. ML is a subcategory of artificial intelligence (AI) that enables systems to learn and improve from measured data and past experiences. The present paper is focused on presenting a broad understanding of the current applications of ML in AM and thus provides a solid background for practitioners and researchers to apply ML in AM. Very few earlier reviews were presented before, but their studies mostly focus on artificial neural network technology and other irrelevant papers. In addition, most papers were published in 2021 and 2022 and were not discussed in earlier reviews. This state-of-the-art review is based on the latest database collected from Web of Science (WoS), Publons, Scopus, and Google Scholar using machine learning and additive manufacturing as the keywords. Extensive information collected on the possible applications of ML in AM shows that ML can be effectively applied to improve AM part quality and process reliability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信