An imperceptible connection between the Clebsch–Gordan coefficients of Uq(sl2) and the Terwilliger algebras of Grassmann graphs

IF 0.9 2区 数学 Q2 MATHEMATICS
Hau-Wen Huang
{"title":"An imperceptible connection between the Clebsch–Gordan coefficients of Uq(sl2) and the Terwilliger algebras of Grassmann graphs","authors":"Hau-Wen Huang","doi":"10.1016/j.jcta.2025.106028","DOIUrl":null,"url":null,"abstract":"<div><div>The Clebsch–Gordan coefficients of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> are expressible in terms of Hahn polynomials. The phenomenon can be explained by an algebra homomorphism ♮ from the universal Hahn algebra <span><math><mi>H</mi></math></span> into <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Let Ω denote a finite set of size <em>D</em> and <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></math></span> denote the power set of Ω. It is generally known that <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup></math></span> supports a <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module. Let <em>k</em> denote an integer with <span><math><mn>0</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>D</mi></math></span> and fix a <em>k</em>-element subset <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of Ω. By identifying <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup></math></span> with <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi><mo>∖</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msup><mo>⊗</mo><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msup></math></span> this induces a <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module structure on <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup></math></span> denoted by <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>. Pulling back via ♮ the <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> forms an <span><math><mi>H</mi></math></span>-module. When <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>D</mi><mo>−</mo><mn>1</mn></math></span> the <span><math><mi>H</mi></math></span>-module <span><math><msup><mrow><mi>C</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>Ω</mi></mrow></msup></mrow></msup><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> enfolds the Terwilliger algebra of the Johnson graph <span><math><mi>J</mi><mo>(</mo><mi>D</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> with respect to <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. This result connects these two seemingly irrelevant topics: The Clebsch–Gordan coefficients of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and the Terwilliger algebras of Johnson graphs. Unfortunately some steps break down in the <em>q</em>-analog case. By making detours, the imperceptible connection between the Clebsch–Gordan coefficients of <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and the Terwilliger algebras of Grassmann graphs is successfully disclosed in this paper.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"214 ","pages":"Article 106028"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000238","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Clebsch–Gordan coefficients of U(sl2) are expressible in terms of Hahn polynomials. The phenomenon can be explained by an algebra homomorphism ♮ from the universal Hahn algebra H into U(sl2)U(sl2). Let Ω denote a finite set of size D and 2Ω denote the power set of Ω. It is generally known that C2Ω supports a U(sl2)-module. Let k denote an integer with 0kD and fix a k-element subset x0 of Ω. By identifying C2Ω with C2Ωx0C2x0 this induces a U(sl2)U(sl2)-module structure on C2Ω denoted by C2Ω(x0). Pulling back via ♮ the U(sl2)U(sl2)-module C2Ω(x0) forms an H-module. When 1kD1 the H-module C2Ω(x0) enfolds the Terwilliger algebra of the Johnson graph J(D,k) with respect to x0. This result connects these two seemingly irrelevant topics: The Clebsch–Gordan coefficients of U(sl2) and the Terwilliger algebras of Johnson graphs. Unfortunately some steps break down in the q-analog case. By making detours, the imperceptible connection between the Clebsch–Gordan coefficients of Uq(sl2) and the Terwilliger algebras of Grassmann graphs is successfully disclosed in this paper.
Uq(sl2)的Clebsch-Gordan系数与Grassmann图的Terwilliger代数之间难以察觉的联系
U(sl2)的Clebsch-Gordan系数可以用Hahn多项式表示。这一现象可以用从通用哈恩代数H到U(sl2)⊗U(sl2)的代数同态解释。设Ω表示大小为D的有限集,2Ω表示Ω的幂集。众所周知,C2Ω支持U(sl2)-模块。设k为0≤k≤D的整数,固定Ω的一个k元素子集x0。通过将C2Ω与C2Ω∈x0⊗C2x0识别,在C2Ω上得到一个U(sl2)⊗U(sl2)模块结构,表示为C2Ω(x0)。通过缩回调,U(sl2)⊗U(sl2)-模C2Ω(x0)形成h模。当1≤k≤D−1时,h模C2Ω(x0)包涵Johnson图J(D,k)关于x0的Terwilliger代数。这个结果将两个看似无关的主题联系起来:U(sl2)的Clebsch-Gordan系数和Johnson图的Terwilliger代数。不幸的是,在q模拟的情况下,有些步骤失效了。本文通过绕弯路,成功地揭示了Uq(sl2)的Clebsch-Gordan系数与Grassmann图的Terwilliger代数之间不易察觉的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信