Energy, exergy, economic, and environmental assessment and performance optimization of dual-stage discharge Carnot battery systems for floating liquefied natural gas

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Zhe Wang , Han Liu , Changhao Jiang , Sijun Liu , Yulong Ji , Fenghui Han
{"title":"Energy, exergy, economic, and environmental assessment and performance optimization of dual-stage discharge Carnot battery systems for floating liquefied natural gas","authors":"Zhe Wang ,&nbsp;Han Liu ,&nbsp;Changhao Jiang ,&nbsp;Sijun Liu ,&nbsp;Yulong Ji ,&nbsp;Fenghui Han","doi":"10.1016/j.enconman.2025.119676","DOIUrl":null,"url":null,"abstract":"<div><div>Floating liquefied natural gas platforms offer a flexible solution for offshore natural gas production, storage, and transfer, but their energy-intensive operations require reliable power supply. This study investigates the use of Carnot batteries to enhance power reliability and energy efficiency on floating liquefied natural gas platforms by effectively utilizing the inherent cold energy of liquefied natural gas. A dual-stage discharge strategy is proposed, where the cold energy of liquefied natural gas is first stored and later reheated using low-temperature oceanic waste heat for a second discharge phase. A thermodynamic model of the floating liquefied natural gas-Carnot battery system is developed, and a comprehensive energy, exergy, economic, and environmental analysis is conducted to assess the impact of key parameters on system performance. Multi-objective optimization using genetic algorithms is employed to optimize system efficiency and operational requirements. The dual-stage discharge system increased round-trip efficiency from 82.4% to 86.2%, while discharge power was enhanced from 1008.8 kW over 4 h in the first stage to an additional 94.4 kW over 17.6 h in the second. The results demonstrate significant improvements in both exergy and round-trip efficiency through strategic adjustments. The proposed system offers substantial potential for enhancing energy utilization on floating liquefied natural gas platforms and provides a scalable solution with promising applications for offshore natural gas operations.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"330 ","pages":"Article 119676"},"PeriodicalIF":9.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425001992","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Floating liquefied natural gas platforms offer a flexible solution for offshore natural gas production, storage, and transfer, but their energy-intensive operations require reliable power supply. This study investigates the use of Carnot batteries to enhance power reliability and energy efficiency on floating liquefied natural gas platforms by effectively utilizing the inherent cold energy of liquefied natural gas. A dual-stage discharge strategy is proposed, where the cold energy of liquefied natural gas is first stored and later reheated using low-temperature oceanic waste heat for a second discharge phase. A thermodynamic model of the floating liquefied natural gas-Carnot battery system is developed, and a comprehensive energy, exergy, economic, and environmental analysis is conducted to assess the impact of key parameters on system performance. Multi-objective optimization using genetic algorithms is employed to optimize system efficiency and operational requirements. The dual-stage discharge system increased round-trip efficiency from 82.4% to 86.2%, while discharge power was enhanced from 1008.8 kW over 4 h in the first stage to an additional 94.4 kW over 17.6 h in the second. The results demonstrate significant improvements in both exergy and round-trip efficiency through strategic adjustments. The proposed system offers substantial potential for enhancing energy utilization on floating liquefied natural gas platforms and provides a scalable solution with promising applications for offshore natural gas operations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信