Fast and lightweight automatic lithology recognition based on efficient vision transformer network

IF 2 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Yan Guo , Zhuowu Li , Fujiang Liu , Weihua Lin , Hongchen Liu , Quansen Shao , Dexiong Zhang , Weichao Liang , Junshun Su , Qiankai Gao
{"title":"Fast and lightweight automatic lithology recognition based on efficient vision transformer network","authors":"Yan Guo ,&nbsp;Zhuowu Li ,&nbsp;Fujiang Liu ,&nbsp;Weihua Lin ,&nbsp;Hongchen Liu ,&nbsp;Quansen Shao ,&nbsp;Dexiong Zhang ,&nbsp;Weichao Liang ,&nbsp;Junshun Su ,&nbsp;Qiankai Gao","doi":"10.1016/j.sesci.2024.100179","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional methods of lithological classification often rely on the expertise of appraisers and the use of sophisticated measuring instruments. These methods are susceptible to staff experience and are time-consuming. To overcome these limitations, researchers have explored the use of rock images and intelligent algorithms to automatically identify rocks. However, models developed for automatic rock properties identification often require high-performance equipment that cannot be readily deployed on lightweight edge devices. To address this problem, we significantly extend our previous research and propose a method for automatic rock properties identification called SBR-EfficientViT. The method is based on an efficient vision converter and builds on our previous training framework. We also developed a training and application flow framework for the method, which can run with memory requirements of less than 720 MB and graphics memory of 1.6 GB. Furthermore, the proposed SBR-EfficientViT-M1 method achieves an impressive accuracy of 94.75%.</div></div>","PeriodicalId":54172,"journal":{"name":"Solid Earth Sciences","volume":"10 1","pages":"Article 100179"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451912X24000175","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional methods of lithological classification often rely on the expertise of appraisers and the use of sophisticated measuring instruments. These methods are susceptible to staff experience and are time-consuming. To overcome these limitations, researchers have explored the use of rock images and intelligent algorithms to automatically identify rocks. However, models developed for automatic rock properties identification often require high-performance equipment that cannot be readily deployed on lightweight edge devices. To address this problem, we significantly extend our previous research and propose a method for automatic rock properties identification called SBR-EfficientViT. The method is based on an efficient vision converter and builds on our previous training framework. We also developed a training and application flow framework for the method, which can run with memory requirements of less than 720 MB and graphics memory of 1.6 GB. Furthermore, the proposed SBR-EfficientViT-M1 method achieves an impressive accuracy of 94.75%.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid Earth Sciences
Solid Earth Sciences GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
5.00%
发文量
20
审稿时长
103 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信