Sonoluminescence and H2O2 produced in water under different ultrasound operating conditions applied to the sono-photo-Fenton landfill leachate treatment
{"title":"Sonoluminescence and H2O2 produced in water under different ultrasound operating conditions applied to the sono-photo-Fenton landfill leachate treatment","authors":"Flavio Alanís , Rainer Nordenflycht , Matías Guerrero , Katherine Villalobos , Rodrigo Poblete , C.A. Rodríguez , Norma Pérez , Ernesto Cortés , Ricardo A. Torres-Palma","doi":"10.1016/j.cep.2025.110246","DOIUrl":null,"url":null,"abstract":"<div><div>Given the global issue of water scarcity, the recovery and treatment of wastewater, as landfill leachate (LL), are of utmost importance. The presence of colloids in LL scatters UV irradiation, limiting the effectiveness of the photo-Fenton process. However, using ultrasound (US) technology can degrade the organic matter in LL and produce H<sub>2</sub>O<sub>2</sub> and sonoluminescence, which are crucial in the photo-Fenton process. With its focus on practical applications, this research aims to improve the quality of LL treatment, thereby addressing a significant and urgent environmental challenge. Also, this research aimed to identify the optimal operational parameters that improve the self-generated H<sub>2</sub>O<sub>2</sub> and sonoluminescence due to the US and to evaluate the improvement of the quality of LL using the sono-photo-Fenton.</div><div>Actinometry was used to measure the sonoluminescence produced in this study. The highest amount of H2O<sub>2</sub> and sonoluminescence was formed at 864 kHz and a US power of 500 W, obtaining 2.63 mg/L of H<sub>2</sub>O<sub>2</sub> and 6.89 × 10<sup>−5</sup> J/s of sonoluminescence. The optimised conditions were used in the sono-photo-Fenton process runs towards the degradation of a simulated LL (SLL) to evaluate the effect of concentration of Fe<sup>+2</sup> and concentration of H<sub>2</sub>O<sub>2</sub> on the depuration of SLL, obtaining a synergy index of 1.25.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"211 ","pages":"Article 110246"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125000959","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Given the global issue of water scarcity, the recovery and treatment of wastewater, as landfill leachate (LL), are of utmost importance. The presence of colloids in LL scatters UV irradiation, limiting the effectiveness of the photo-Fenton process. However, using ultrasound (US) technology can degrade the organic matter in LL and produce H2O2 and sonoluminescence, which are crucial in the photo-Fenton process. With its focus on practical applications, this research aims to improve the quality of LL treatment, thereby addressing a significant and urgent environmental challenge. Also, this research aimed to identify the optimal operational parameters that improve the self-generated H2O2 and sonoluminescence due to the US and to evaluate the improvement of the quality of LL using the sono-photo-Fenton.
Actinometry was used to measure the sonoluminescence produced in this study. The highest amount of H2O2 and sonoluminescence was formed at 864 kHz and a US power of 500 W, obtaining 2.63 mg/L of H2O2 and 6.89 × 10−5 J/s of sonoluminescence. The optimised conditions were used in the sono-photo-Fenton process runs towards the degradation of a simulated LL (SLL) to evaluate the effect of concentration of Fe+2 and concentration of H2O2 on the depuration of SLL, obtaining a synergy index of 1.25.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.