{"title":"The geometry of intersecting codes and applications to additive combinatorics and factorization theory","authors":"Martino Borello , Wolfgang Schmid , Martin Scotti","doi":"10.1016/j.jcta.2025.106023","DOIUrl":null,"url":null,"abstract":"<div><div>Intersecting codes are linear codes where every two nonzero codewords have non-trivially intersecting support. In this article we expand on the theory of this family of codes, by showing that nondegenerate intersecting codes correspond to sets of points (with multiplicities) in a projective space that are not contained in two hyperplanes. This correspondence allows the use of geometric arguments to demonstrate properties and provide constructions of intersecting codes. We improve on existing bounds on their length and provide explicit constructions of short intersecting codes. Finally, generalizing a link between coding theory and the theory of the Davenport constant (a combinatorial invariant of finite abelian groups), we provide new asymptotic bounds on the weighted 2-wise Davenport constant. These bounds then yield results on factorizations in rings of algebraic integers and related structures.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"214 ","pages":"Article 106023"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000184","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Intersecting codes are linear codes where every two nonzero codewords have non-trivially intersecting support. In this article we expand on the theory of this family of codes, by showing that nondegenerate intersecting codes correspond to sets of points (with multiplicities) in a projective space that are not contained in two hyperplanes. This correspondence allows the use of geometric arguments to demonstrate properties and provide constructions of intersecting codes. We improve on existing bounds on their length and provide explicit constructions of short intersecting codes. Finally, generalizing a link between coding theory and the theory of the Davenport constant (a combinatorial invariant of finite abelian groups), we provide new asymptotic bounds on the weighted 2-wise Davenport constant. These bounds then yield results on factorizations in rings of algebraic integers and related structures.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.