{"title":"Multi-parameter modeling and analysis of ground motion amplification in the Quaternary sedimentary basin of the Beijing-Tianjin-Hebei region","authors":"Hong Zhou","doi":"10.1016/j.eqs.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>Basin effect was first described following the analysis of seismic ground motion associated with the 1985 <em>M</em><sub>W</sub>8.1 earthquake in Mexico. Basins affect the propagation of seismic waves through various mechanisms, and several unique phenomena, such as the basin edge effect, basin focusing effect, and basin-induced secondary waves, have been observed. Understanding and quantitatively predicting these phenomena are crucial for earthquake disaster reduction. Some pioneering studies in this field have proposed a quantitative relationship between the basin effect on ground motion and basin depth. Unfortunately, basin effect phenomena predicted using a model based only on basin depth exhibit large deviations from actual distributions, implying the severe shortcomings of single-parameter basin effect modeling. Quaternary sediments are thick and widely distributed in the Beijing-Tianjin-Hebei region. The seismic media inside and outside of this basin have significantly different physical properties, and the basin bottom forms an interface with strong seismic reflections. In this study, we established a three-dimensional structure model of the Quaternary sedimentary basin based on the velocity structure model of the North China Craton and used it to simulate the ground motion under a strong earthquake following the spectral element method, obtaining the spatial distribution characteristics of the ground motion amplification ratio throughout the basin. The back-propagation(BP) neural network algorithm was then introduced to establish a multi-parameter mathematical model for predicting ground motion amplification ratios, with the seismic source location, physical property ratio of the media inside and outside the basin, seismic wave frequency, and basin shape as the input parameters. We then examined the main factors influencing the amplification of seismic ground motion in basins based on the prediction results, and concluded that the main factors influencing the basin effect are basin shape and differences in the physical properties of media inside and outside the basin.</div></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"38 2","pages":"Pages 136-151"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451924001125","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico. Basins affect the propagation of seismic waves through various mechanisms, and several unique phenomena, such as the basin edge effect, basin focusing effect, and basin-induced secondary waves, have been observed. Understanding and quantitatively predicting these phenomena are crucial for earthquake disaster reduction. Some pioneering studies in this field have proposed a quantitative relationship between the basin effect on ground motion and basin depth. Unfortunately, basin effect phenomena predicted using a model based only on basin depth exhibit large deviations from actual distributions, implying the severe shortcomings of single-parameter basin effect modeling. Quaternary sediments are thick and widely distributed in the Beijing-Tianjin-Hebei region. The seismic media inside and outside of this basin have significantly different physical properties, and the basin bottom forms an interface with strong seismic reflections. In this study, we established a three-dimensional structure model of the Quaternary sedimentary basin based on the velocity structure model of the North China Craton and used it to simulate the ground motion under a strong earthquake following the spectral element method, obtaining the spatial distribution characteristics of the ground motion amplification ratio throughout the basin. The back-propagation(BP) neural network algorithm was then introduced to establish a multi-parameter mathematical model for predicting ground motion amplification ratios, with the seismic source location, physical property ratio of the media inside and outside the basin, seismic wave frequency, and basin shape as the input parameters. We then examined the main factors influencing the amplification of seismic ground motion in basins based on the prediction results, and concluded that the main factors influencing the basin effect are basin shape and differences in the physical properties of media inside and outside the basin.
期刊介绍:
Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration.
The topics include, but not limited to, the following
● Seismic sources of all kinds.
● Earth structure at all scales.
● Seismotectonics.
● New methods and theoretical seismology.
● Strong ground motion.
● Seismic phenomena of all kinds.
● Seismic hazards, earthquake forecasting and prediction.
● Seismic instrumentation.
● Significant recent or past seismic events.
● Documentation of recent seismic events or important observations.
● Descriptions of field deployments, new methods, and available software tools.
The types of manuscripts include the following. There is no length requirement, except for the Short Notes.
【Articles】 Original contributions that have not been published elsewhere.
【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages.
【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications.
【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals.
【Toolboxes】 Descriptions of novel numerical methods and associated computer codes.
【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models).
【Opinions】Views on important topics and future directions in earthquake science.
【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.