Efficient energy management and temperature control of a high-tech greenhouse using an improved data-driven model predictive control

IF 7.1 Q1 ENERGY & FUELS
Farhat Mahmood, Rajesh Govindan, Tareq Al-Ansari
{"title":"Efficient energy management and temperature control of a high-tech greenhouse using an improved data-driven model predictive control","authors":"Farhat Mahmood,&nbsp;Rajesh Govindan,&nbsp;Tareq Al-Ansari","doi":"10.1016/j.ecmx.2025.100939","DOIUrl":null,"url":null,"abstract":"<div><div>Greenhouses in arid climates require advanced control systems to maintain the microclimate and reduce energy utilization, ensuring economic viability. To address these challenges, model predictive control is an effective method that forecasts the system’s future state and adjusts control variables accordingly. However, deterministic model predictive control does not account for system uncertainties, leading to performance degradation. Therefore, this study proposes an improved model predictive control framework that utilizes an artificial neural network developed from historical greenhouse data. This method uses a double layer approach, where the primary controller provides the nominal trajectory, and an ancillary controller adjusts for uncertainties. The double layer predictive control framework was assessed under varying conditions to evaluate the performance in terms of temperature control and energy utilization. Results illustrated that, despite system uncertainties, the double layer model predictive control framework outperformed the existing greenhouse climate system, deterministic and robust model predictive control approaches. It demonstrated mean absolute errors of 0.09 °C in winter and 0.10 °C in summer, with corresponding root mean squared errors of 0.19 °C and 0.36 °C, respectively. Moreover, the double layer model predictive control method reduced energy utilization by 20.01 % in winter and 13.34 % in summer compared to the existing control system over a 4 d simulation period.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"26 ","pages":"Article 100939"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174525000716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Greenhouses in arid climates require advanced control systems to maintain the microclimate and reduce energy utilization, ensuring economic viability. To address these challenges, model predictive control is an effective method that forecasts the system’s future state and adjusts control variables accordingly. However, deterministic model predictive control does not account for system uncertainties, leading to performance degradation. Therefore, this study proposes an improved model predictive control framework that utilizes an artificial neural network developed from historical greenhouse data. This method uses a double layer approach, where the primary controller provides the nominal trajectory, and an ancillary controller adjusts for uncertainties. The double layer predictive control framework was assessed under varying conditions to evaluate the performance in terms of temperature control and energy utilization. Results illustrated that, despite system uncertainties, the double layer model predictive control framework outperformed the existing greenhouse climate system, deterministic and robust model predictive control approaches. It demonstrated mean absolute errors of 0.09 °C in winter and 0.10 °C in summer, with corresponding root mean squared errors of 0.19 °C and 0.36 °C, respectively. Moreover, the double layer model predictive control method reduced energy utilization by 20.01 % in winter and 13.34 % in summer compared to the existing control system over a 4 d simulation period.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
3.20%
发文量
180
审稿时长
58 days
期刊介绍: Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability. The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信