State-of-the-art Gaidai hypersurface reliability assessment for semi-submersible wind turbines, accounting for memory effects

IF 7.1 Q1 ENERGY & FUELS
Oleg Gaidai , Fang Wang , Jinlu Sheng , Yan Zhu , Alia Ashraf , Yu Cao
{"title":"State-of-the-art Gaidai hypersurface reliability assessment for semi-submersible wind turbines, accounting for memory effects","authors":"Oleg Gaidai ,&nbsp;Fang Wang ,&nbsp;Jinlu Sheng ,&nbsp;Yan Zhu ,&nbsp;Alia Ashraf ,&nbsp;Yu Cao","doi":"10.1016/j.ecmx.2025.100946","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays renewable, sustainable green energy generation gaining momentum, as environmental concerns, e.g., climate change making fossil fuel usage less attractive. Resultingly, offshore wave and wind power are gaining popularity, steadily replacing hydrocarbon energy sources. Floating offshore wind turbines (FOWT), being pivotal for contemporary offshore green wind energy generation.</div><div>Accurate structural lifespan prognostics is necessary for safe and resilient technological design, operational safety and economic viability. Non-stationary, multi-modal dynamic environmental wave-wind loads result in accumulated fatigue damage, as well as excessive structural deformations. Presented case study introduces generic, robust multi-modal structural reliability evaluation methodology, based on accurate numerical modelling of in-situ environmental hydro- and aero-dynamic stressors, acting on operating FOWT. Coupled aero-hydro-servo-elastic nonlinear software package OpenFAST was employed for numerical Monte Carlo Simulations (MCS). Investigated 5 MW FOWT is designed to withstand nonlinear, nonstationary, periodically adverse ambient environmental conditions throughout its complete designed service-life. This case study outlines state-of-the-art multi-modal hypersurface risk evaluation and lifetime assessment methodology.</div><div>The primary novelty and practical advantage of the proposed multi-modal Gaidai hypersurface structural risk evaluation approach lie within its robust capacity to evaluate structural damage (hazard/failure) risks for complex dynamic structural systems, with no limitation on the structural Number of Degrees Of Freedom (NDOF), i.e., the number of inter-correlated system dimensions/components.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"26 ","pages":"Article 100946"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174525000789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays renewable, sustainable green energy generation gaining momentum, as environmental concerns, e.g., climate change making fossil fuel usage less attractive. Resultingly, offshore wave and wind power are gaining popularity, steadily replacing hydrocarbon energy sources. Floating offshore wind turbines (FOWT), being pivotal for contemporary offshore green wind energy generation.
Accurate structural lifespan prognostics is necessary for safe and resilient technological design, operational safety and economic viability. Non-stationary, multi-modal dynamic environmental wave-wind loads result in accumulated fatigue damage, as well as excessive structural deformations. Presented case study introduces generic, robust multi-modal structural reliability evaluation methodology, based on accurate numerical modelling of in-situ environmental hydro- and aero-dynamic stressors, acting on operating FOWT. Coupled aero-hydro-servo-elastic nonlinear software package OpenFAST was employed for numerical Monte Carlo Simulations (MCS). Investigated 5 MW FOWT is designed to withstand nonlinear, nonstationary, periodically adverse ambient environmental conditions throughout its complete designed service-life. This case study outlines state-of-the-art multi-modal hypersurface risk evaluation and lifetime assessment methodology.
The primary novelty and practical advantage of the proposed multi-modal Gaidai hypersurface structural risk evaluation approach lie within its robust capacity to evaluate structural damage (hazard/failure) risks for complex dynamic structural systems, with no limitation on the structural Number of Degrees Of Freedom (NDOF), i.e., the number of inter-correlated system dimensions/components.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
3.20%
发文量
180
审稿时长
58 days
期刊介绍: Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability. The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信