Non-destructive quantification of low colchicine concentrations in commercially available tablets using transmission raman spectroscopy with partial least squares
{"title":"Non-destructive quantification of low colchicine concentrations in commercially available tablets using transmission raman spectroscopy with partial least squares","authors":"Ningzi Guo , Sijing Niu , Ying Geng , Guangzhi Shan , Ningyi Wei , Hua Chen","doi":"10.1016/j.ijpx.2025.100321","DOIUrl":null,"url":null,"abstract":"<div><div>The narrow therapeutic index and significant toxicity of colchicine (COL) underscore the importance of content uniformity of dosage units to ensure drug safety and efficacy. In this study, transmission Raman spectroscopy (TRS) technology combined with partial least squares (PLS) regression was used for the non-destructive determination of low concentration levels of COL in commercial tablets (0.83 % <em>w</em>/w). Based on a multifactor orthogonal design of experiment, one hundred calibration tablets ranging in drug content from 70 % to 130 % of the label claim were manufactured to develop an initial model which was further calibrated using the HPLC results. The quantitative model displayed good repeatability and high accuracy with a root-mean-standard error for calibration of 0.038 % and root-mean-standard error for cross-validation of 0.039 %. The limits of detection and quantification were 0.13 % and 0.40 % <em>w</em>/w, respectively. The absolute value of relative error of the TRS and HPLC content results for commercial tablets varied between 0 and 3.8 %. Notably, the relative standard deviation (RSD) of the TRS method was 1.2 %, lower than the RSD of 2.9 % observed with HPLC. The results demonstrated a fast and non-destructive method for the quality control of highly toxic and low content active pharmaceutical ingredients in commercial products, without human or environmental exposure to toxic substances during sample preparation.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"9 ","pages":"Article 100321"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156725000064","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The narrow therapeutic index and significant toxicity of colchicine (COL) underscore the importance of content uniformity of dosage units to ensure drug safety and efficacy. In this study, transmission Raman spectroscopy (TRS) technology combined with partial least squares (PLS) regression was used for the non-destructive determination of low concentration levels of COL in commercial tablets (0.83 % w/w). Based on a multifactor orthogonal design of experiment, one hundred calibration tablets ranging in drug content from 70 % to 130 % of the label claim were manufactured to develop an initial model which was further calibrated using the HPLC results. The quantitative model displayed good repeatability and high accuracy with a root-mean-standard error for calibration of 0.038 % and root-mean-standard error for cross-validation of 0.039 %. The limits of detection and quantification were 0.13 % and 0.40 % w/w, respectively. The absolute value of relative error of the TRS and HPLC content results for commercial tablets varied between 0 and 3.8 %. Notably, the relative standard deviation (RSD) of the TRS method was 1.2 %, lower than the RSD of 2.9 % observed with HPLC. The results demonstrated a fast and non-destructive method for the quality control of highly toxic and low content active pharmaceutical ingredients in commercial products, without human or environmental exposure to toxic substances during sample preparation.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.