Electrochemically activated carbon nanotube anodes for enhanced microbial fuel cell performance

Yanxia Wang , Miao Yu , Yuhang Wang , Zhuo Ma , Yunfeng Qiu , Changzhu Lv , Shengze Yu , Shaoqin Liu
{"title":"Electrochemically activated carbon nanotube anodes for enhanced microbial fuel cell performance","authors":"Yanxia Wang ,&nbsp;Miao Yu ,&nbsp;Yuhang Wang ,&nbsp;Zhuo Ma ,&nbsp;Yunfeng Qiu ,&nbsp;Changzhu Lv ,&nbsp;Shengze Yu ,&nbsp;Shaoqin Liu","doi":"10.1016/j.nxener.2025.100255","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon nanotube (CNT) modified anodes in microbial fuel cells (MFCs) face limitations in startup time and power output due to slow microorganism colonization and poor extracellular electron transfer (EET). This is often caused by the hydrophobic nature and low specific capacitance of high-temperature synthesized CNTs. This study presents a novel approach to overcome these limitations by developing a hydrophilic and high-capacitance anode using electrochemically activated iron and nitrogen-doped CNTs (A-FeNCNTs) on carbon cloth (CC). A-FeNCNTs@CC demonstrates significantly improved biocompatibility and charge storage capacity compared to pristine CC. In MFC tests using mixed cultures, A-FeNCNTs@CC achieved a faster startup time of 1.8 days (1.5 days shorter than CC) and a higher power density of 3.07 W/m<sup>2</sup> (about 1.58 times that of the CC anode). Additionally, chemical oxygen demand (COD) removal efficiency reached 91.82%, surpassing CC (74.93%). The enhanced performance is attributed to the synergistic effects of increased hydrophilicity and capacitance, promoting robust biofilm formation and efficient EET. This work establishes a promising strategy for tailoring the physicochemical properties of carbon-based anodes, leading to significant advancements in MFC performance and demonstrating the potential of A-FeNCNTs@CC for enhanced bioelectricity generation and wastewater treatment.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"8 ","pages":"Article 100255"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25000183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon nanotube (CNT) modified anodes in microbial fuel cells (MFCs) face limitations in startup time and power output due to slow microorganism colonization and poor extracellular electron transfer (EET). This is often caused by the hydrophobic nature and low specific capacitance of high-temperature synthesized CNTs. This study presents a novel approach to overcome these limitations by developing a hydrophilic and high-capacitance anode using electrochemically activated iron and nitrogen-doped CNTs (A-FeNCNTs) on carbon cloth (CC). A-FeNCNTs@CC demonstrates significantly improved biocompatibility and charge storage capacity compared to pristine CC. In MFC tests using mixed cultures, A-FeNCNTs@CC achieved a faster startup time of 1.8 days (1.5 days shorter than CC) and a higher power density of 3.07 W/m2 (about 1.58 times that of the CC anode). Additionally, chemical oxygen demand (COD) removal efficiency reached 91.82%, surpassing CC (74.93%). The enhanced performance is attributed to the synergistic effects of increased hydrophilicity and capacitance, promoting robust biofilm formation and efficient EET. This work establishes a promising strategy for tailoring the physicochemical properties of carbon-based anodes, leading to significant advancements in MFC performance and demonstrating the potential of A-FeNCNTs@CC for enhanced bioelectricity generation and wastewater treatment.

Abstract Image

提高微生物燃料电池性能的电化学活性炭纳米管阳极
微生物燃料电池(mfc)中碳纳米管(CNT)修饰阳极由于微生物定植缓慢和细胞外电子转移(EET)差而面临启动时间和功率输出的限制。这通常是由于高温合成碳纳米管的疏水性和低比电容造成的。本研究提出了一种克服这些限制的新方法,即在碳布(CC)上使用电化学活化铁和氮掺杂碳纳米管(a - fencnts)开发亲水性高电容阳极。与原始CC相比,A-FeNCNTs@CC的生物相容性和电荷存储能力显著提高。在使用混合培养的MFC测试中,A-FeNCNTs@CC的启动时间缩短了1.8天(比CC短1.5天),功率密度更高,为3.07 W/m2(约为CC阳极的1.58倍)。化学需氧量(COD)去除率达91.82%,超过了CC(74.93%)。增强的性能是由于亲水性和电容增加的协同效应,促进了牢固的生物膜形成和高效的EET。这项工作建立了一个有前途的策略来定制碳基阳极的物理化学性质,导致MFC性能的重大进步,并展示了A-FeNCNTs@CC在增强生物发电和废水处理方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信