Shahbaz Hussain , Sibel Irmak , Muhammad Usman Farid
{"title":"Developing N, S-doped hierarchical porous carbon-supported Pt catalysts for hydrothermal gasification of woody biomass to hydrogen","authors":"Shahbaz Hussain , Sibel Irmak , Muhammad Usman Farid","doi":"10.1016/j.nxener.2025.100257","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen is a promising clean fuel with 0 carbon emission; only byproduct released from its use is water. The current large-scale hydrogen production methods are expensive and do not meet sustainability criteria. Finding alternative but cheaper sustainable ways for hydrogen production is important, and the catalyst plays a key role in this process. This study was designed to develop hierarchical porous carbons (HPCs)-based catalysts to enhance hydrogen production yield from lignocellulosic biomass by hydrothermal gasification. HPCs were synthesized from widely available waste materials, forest-based woody biomass, and poultry feathers with a promising approach (use of solubilized fractions of the precursors rather than direct carbonization of their solid forms, performing in-situ heteroatom doping and enhancing the porosity of the carbon by using a gas-forming salt, etc.). The HPC prepared from biomass/chicken feather mixture in the presence of a gas-forming salt, NaHCO<sub>3</sub>, was the most promising carbon because of its high porosity structure with pore size ranging from ∼65 nm to ∼1.8 µm, and the 80% of the pores was around 200–450 nm. The specific surface area of the catalyst prepared by deposition of Pt particles on this carbon was found to be 3200 m<sup>2</sup>/g with an average pore size of 2.3 nm. On the other hand, the HPC prepared in the absence of NaHCO<sub>3</sub> had 2900 m<sup>2</sup>/g surface area and 1.8 nm average pore size. The hydrogen production activity of HPC-with NaHCO<sub>3</sub>/Pt catalyst was found to be 23.81 ml H<sub>2</sub>/mg Pt, which was the highest activity among the catalysts tested. This was attributed to the highly porous structure and the presence of sodium or sodium-containing species (e.g., Na<sub>2</sub>O) in the carbon network. The findings of this study have the potential to open new catalytic opportunities for different reactions using HPCs-based multifunctional catalysts.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"8 ","pages":"Article 100257"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25000201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen is a promising clean fuel with 0 carbon emission; only byproduct released from its use is water. The current large-scale hydrogen production methods are expensive and do not meet sustainability criteria. Finding alternative but cheaper sustainable ways for hydrogen production is important, and the catalyst plays a key role in this process. This study was designed to develop hierarchical porous carbons (HPCs)-based catalysts to enhance hydrogen production yield from lignocellulosic biomass by hydrothermal gasification. HPCs were synthesized from widely available waste materials, forest-based woody biomass, and poultry feathers with a promising approach (use of solubilized fractions of the precursors rather than direct carbonization of their solid forms, performing in-situ heteroatom doping and enhancing the porosity of the carbon by using a gas-forming salt, etc.). The HPC prepared from biomass/chicken feather mixture in the presence of a gas-forming salt, NaHCO3, was the most promising carbon because of its high porosity structure with pore size ranging from ∼65 nm to ∼1.8 µm, and the 80% of the pores was around 200–450 nm. The specific surface area of the catalyst prepared by deposition of Pt particles on this carbon was found to be 3200 m2/g with an average pore size of 2.3 nm. On the other hand, the HPC prepared in the absence of NaHCO3 had 2900 m2/g surface area and 1.8 nm average pore size. The hydrogen production activity of HPC-with NaHCO3/Pt catalyst was found to be 23.81 ml H2/mg Pt, which was the highest activity among the catalysts tested. This was attributed to the highly porous structure and the presence of sodium or sodium-containing species (e.g., Na2O) in the carbon network. The findings of this study have the potential to open new catalytic opportunities for different reactions using HPCs-based multifunctional catalysts.