CovKG: A Covid-19 Knowledge Graph for enabling multidimensional analytics on Covid-19 epidemiological data considering spatiotemporal, environmental, health, and socioeconomic aspects

Rudra Pratap Deb Nath , S.M. Shafkat Raihan , Tonmoy Chandro Das , Torben Bach Pedersen , Debasish Ghose
{"title":"CovKG: A Covid-19 Knowledge Graph for enabling multidimensional analytics on Covid-19 epidemiological data considering spatiotemporal, environmental, health, and socioeconomic aspects","authors":"Rudra Pratap Deb Nath ,&nbsp;S.M. Shafkat Raihan ,&nbsp;Tonmoy Chandro Das ,&nbsp;Torben Bach Pedersen ,&nbsp;Debasish Ghose","doi":"10.1016/j.jjimei.2025.100325","DOIUrl":null,"url":null,"abstract":"<div><div>The Covid-19 pandemic is influenced by many environmental, health, and socioeconomic aspects such as air pollution, comorbidity, occupation, etc. To better manage future pandemics, decision-makers need comprehensive data on Covid-19 mortality and morbidity. Most Covid-19 data sources focus on spatiotemporal aspects, and existing research often overlook the combined impact of multiple interconnected factors. This study introduces a Covid-19 Knowledge Graph (CovKG) derived from 20 data sources, enabling multidimensional analysis of epidemiological data, including time, location, temperature, comorbidity, occupation, and others. CovKG is modeled using RDF, connected to 10,951 external resources, and semantically enriched with Data Cube (QB) and QB for OLAP (QB4OLAP) vocabularies to adhere to the FAIR principles and ensure OLAP compatibility. Finally, we perform a qualitative and comparative evaluation and extract statistical insights across multiple dimensions of Covid-19 epidemiology. When assessed, CovKG answers 100% of competency queries, outperforming other data stores that only answer 39%. CovKG and its analytical interface are available at <span><span>https://bike-csecu.com/datasets/CovKG/</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"5 1","pages":"Article 100325"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096825000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Covid-19 pandemic is influenced by many environmental, health, and socioeconomic aspects such as air pollution, comorbidity, occupation, etc. To better manage future pandemics, decision-makers need comprehensive data on Covid-19 mortality and morbidity. Most Covid-19 data sources focus on spatiotemporal aspects, and existing research often overlook the combined impact of multiple interconnected factors. This study introduces a Covid-19 Knowledge Graph (CovKG) derived from 20 data sources, enabling multidimensional analysis of epidemiological data, including time, location, temperature, comorbidity, occupation, and others. CovKG is modeled using RDF, connected to 10,951 external resources, and semantically enriched with Data Cube (QB) and QB for OLAP (QB4OLAP) vocabularies to adhere to the FAIR principles and ensure OLAP compatibility. Finally, we perform a qualitative and comparative evaluation and extract statistical insights across multiple dimensions of Covid-19 epidemiology. When assessed, CovKG answers 100% of competency queries, outperforming other data stores that only answer 39%. CovKG and its analytical interface are available at https://bike-csecu.com/datasets/CovKG/.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信